A self-oscillating ionic polymer-metal composite bending actuator

被引:55
|
作者
Pugal, Deivid [1 ,2 ]
Kim, Kwang J. [1 ]
Punning, Andres [2 ]
Kasemagi, Heiki [2 ]
Kruusmaa, Maarja [2 ]
Aabloo, Alvo [2 ]
机构
[1] Univ Nevada, Dept Mech Engn, Act Mat & Proc Lab, Reno, NV 89557 USA
[2] Univ Tartu, Inst Technol, IMS Lab, EE-50411 Tartu, Estonia
关键词
D O I
10.1063/1.2903478
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper presents an electromechanical model of an ionic polymer-metal composite (IPMC) material. The modeling technique is a finite element method (FEM). An applied electric field causes the drift of counterions (e.g., Na+), which, in turn, drags water molecules. The mass and charge imbalance inside the polymer is the main cause of the bending motion of the IPMC. The studied physical effects have been considered as time dependent and modeled with FEM. The model takes into account the mechanical properties of the Nafion polymer as well as the thin coating of the platinum electrodes and the platinum diffusion layer. The modeling of the electrochemical reactions, in connection with the self-oscillating behavior of an IPMC, is also considered. Reactions occurring on the surface of the platinum electrode, which is immersed into formaldehyde (HCHO) solution during the testing, are described using partial differential equations and also modeled using FEM. By coupling the equations with the rest of the model, we are able to simulate the self-oscillating behavior of an IPMC sheet. (C) 2008 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Electrochemistry of ionic polymer-metal composite
    Kim, D
    Kim, KJ
    SMART STRUCTURES AND MATERIALS 2005: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES( EAPAD), 2005, 5759 : 464 - 469
  • [32] A nonlinear scalable model for designing ionic polymer-metal composite actuator systems
    McDaid, A. J.
    Aw, K. C.
    Haemmerle, E.
    Xie, S. Q.
    SECOND INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING, 2009, 7493
  • [33] Force control of ionic polymer-metal composite actuators with cellular actuator method
    Inoue, Yushiro
    Kamamichi, Norihiro
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2014, 2014, 9056
  • [34] Fractional-order modeling and control of ionic polymer-metal composite actuator
    Tepljakov, Aleksei
    Vunder, Veiko
    Petlenkov, Eduard
    Nakshatharan, S. Sunjai
    Punning, Andres
    Kaparin, Vadim
    Belikov, Juri
    Aabloo, Alvo
    SMART MATERIALS AND STRUCTURES, 2019, 28 (08)
  • [35] Performance Improvement of an Ionic Polymer-Metal Composite Actuator by Using DMSO as Solvent
    Khmelnitskiy, Ivan
    Vereschagina, Lydia
    Kalyonov, Vladimir
    Krot, Aleksandra
    Korlyakov, Andrei
    PROCEEDINGS OF THE 2016 IEEE NORTH WEST RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (ELCONRUSNW), 2016, : 58 - 61
  • [36] Ionic polymer-metal composite applications
    ul Haq, Mazhar
    Gang, Zhao
    EMERGING MATERIALS RESEARCH, 2016, 5 (01) : 153 - 164
  • [37] Effect of nucleation time on bending response of ionic polymer-metal composite actuators
    Kim, Suran
    Hong, Seungbum
    Choi, Yoon-Young
    Song, Hanwook
    No, Kwangsoo
    ELECTROCHIMICA ACTA, 2013, 108 : 547 - 553
  • [38] A chaotic self-oscillating sunlight-driven polymer actuator
    Kumar, Kamlesh
    Knie, Christopher
    Bleger, David
    Peletier, Mark A.
    Friedrich, Heiner
    Hecht, Stefan
    Broer, Dirk J.
    Debije, Michael G.
    Schenning, Albertus P. H. J.
    NATURE COMMUNICATIONS, 2016, 7
  • [39] A chaotic self-oscillating sunlight-driven polymer actuator
    Kamlesh Kumar
    Christopher Knie
    David Bléger
    Mark A. Peletier
    Heiner Friedrich
    Stefan Hecht
    Dirk J. Broer
    Michael G. Debije
    Albertus P. H. J. Schenning
    Nature Communications, 7
  • [40] A neural network modeling and sliding mode control of self-sensing ionic polymer-metal composite actuator
    Nakshatharan, S. Sunjai
    Punning, Andres
    Aabloo, Alvo
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (20) : 3163 - 3174