M-theory, the signature theorem, and geometric invariants

被引:4
作者
Sati, Hisham [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 12期
关键词
E-8; GAUGE-THEORY; SPECTRAL ASYMMETRY; FLUX-QUANTIZATION; INTEGRAND; ANOMALIES; BUNDLES;
D O I
10.1103/PhysRevD.83.126010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The equations of motion and the Bianchi identity of the C-field in M-theory are encoded in terms of the signature operator. We then reformulate the topological part of the action in M-theory using the signature, which leads to connections to the geometry of the underlying manifold, including positive scalar curvature. This results in a variation on the miraculous cancellation formula of Alvarez-Gaume and Witten in 12 dimensions and leads naturally to the Kreck-Stolz s-invariant in 11 dimensions. Hence M-theory detects the diffeomorphism type of 11-dimensional (and seven-dimensional) manifolds and in the restriction to parallelizable manifolds classifies topological 11 spheres. Furthermore, requiring the phase of the partition function to be anomaly-free imposes restrictions on allowed values of the s-invariant. Relating to string theory in ten dimensions amounts to viewing the bounding theory as a disk bundle, for which we study the corresponding phase in this formulation.
引用
收藏
页数:10
相关论文
共 36 条
[1]   GRAVITATIONAL ANOMALIES [J].
ALVAREZGAUME, L ;
WITTEN, E .
NUCLEAR PHYSICS B, 1984, 234 (02) :269-330
[2]  
[Anonymous], 1962, Ann. Mat. Pura Appl.
[3]  
[Anonymous], 1983, PUBL MATH I HAUTES E
[4]  
[Anonymous], ARXIV10051700
[5]  
Atiyah M.F., 1973, Bull. Lond. Math. Soc., V5, P229, DOI 10.1112/blms/5.2.229
[6]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[7]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[8]  
ATIYAH MF, 1968, ANN MATH, V87, P546, DOI 10.2307/1970717
[9]   CIRCLE BUNDLES AND THE KRECK-STOLZ INVARIANT [J].
DAI, XZ ;
ZHANG, WP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) :3587-3593
[10]  
Diaconescu D-E., 2003, Adv. Theor. Math. Phys, V6, P1031, DOI DOI 10.4310/ATMP.2002.V6.N6.A2