In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells

被引:372
作者
Wang, YZ
Kim, UJ
Blasioli, DJ
Kim, HJ
Kaplan, DL
机构
[1] Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA
[2] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[3] Samsung Fine Chem Co Ltd, Mecellose R&D Team, R&D Ctr, Taejon 305380, South Korea
关键词
mesenchymal stem cell; MSC; cartilage tissue engineering; aqueous-derived silk scaffold;
D O I
10.1016/j.biomaterials.2005.05.022
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Adult cartilage tissue has limited self-repair capacity, especially in the case of severe damages caused by developmental abnormalities, trauma, or aging-related degeneration like osteoarthritis. Adult mesenchymal stem cells (MSCs) have the potential to differentiate into cells of different lineages including bone, cartilage, and fat. In vitro cartilage tissue engineering using autologous MSCs and three-dimensional (3-D) porous scaffolds has the potential for the successful repair of severe cartilage damage. Ideally, scaffolds designed for cartilage tissue engineering should have optimal structural and mechanical properties, excellent biocompatibility, controlled degradation rate, and good handling characteristics. In the present work, a novel, highly porous silk scaffold was developed by an aqueous process according to these criteria and subsequently combined with MSCs for in vitro cartilage tissue engineering. Chondrogenesis of MSCs in the silk scaffold was evident by real-time RT-PCR analysis for cartilage-specific ECM gene markers, histological and immunohistochemical evaluations of cartilage-specific ECM components. Dexamethasone and TGF-beta 3 were essential for the survival, proliferation and chondrogenesis of MSCs in the silk scaffolds. The attachment, proliferation, and differentiation of MSCs in the silk scaffold showed unique characteristics. After 3 weeks of cultivation, the spatial cell arrangement and the collagen type-II distribution in the MSCs-silk scaffold constructs resembles those in native articular cartilage tissue, suggesting promise for these novel 3-D degradable silk-based scaffolds in MSC-based cartilage repair. Further in vivo evaluation is necessary to fully recognize the clinical relevance of these observations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7082 / 7094
页数:13
相关论文
共 76 条
  • [1] A NEW RAPID AND SIMPLE NONRADIOACTIVE ASSAY TO MONITOR AND DETERMINE THE PROLIFERATION OF LYMPHOCYTES - AN ALTERNATIVE TO [H-3] THYMIDINE INCORPORATION ASSAY
    AHMED, SA
    GOGAL, RM
    WALSH, JE
    [J]. JOURNAL OF IMMUNOLOGICAL METHODS, 1994, 170 (02) : 211 - 224
  • [2] Collagens -: major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair
    Aigner, T
    Stöve, J
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2003, 55 (12) : 1569 - 1593
  • [3] Silk-based biomaterials
    Altman, GH
    Diaz, F
    Jakuba, C
    Calabro, T
    Horan, RL
    Chen, JS
    Lu, H
    Richmond, J
    Kaplan, DL
    [J]. BIOMATERIALS, 2003, 24 (03) : 401 - 416
  • [4] Silk matrix for tissue engineered anterior cruciate ligaments
    Altman, GH
    Horan, RL
    Lu, HH
    Moreau, J
    Martin, I
    Richmond, JC
    Kaplan, DL
    [J]. BIOMATERIALS, 2002, 23 (20) : 4131 - 4141
  • [5] Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering
    Altman, GH
    Lu, HH
    Horan, RL
    Calabro, T
    Ryder, D
    Kaplan, DL
    Stark, P
    Martin, I
    Richmond, JC
    Vunjak-Novakovic, G
    [J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (06): : 742 - 749
  • [6] Cell differentiation by mechanical stress
    Altman, GH
    Horan, RL
    Martin, I
    Farhadi, J
    Stark, PRH
    Volloch, V
    Richmond, JC
    Vunjak-Novakovic, G
    Kaplan, DL
    [J]. FASEB JOURNAL, 2001, 15 (14) : 270 - +
  • [7] Engineering of osteochondral tissue with bone marrow mesenchymal progenitor: Cells in a derivatized hyaluronan-gelatin composite sponge
    Angele, P
    Kujat, R
    Nerlich, M
    Yoo, J
    Goldberg, V
    Johnstone, B
    [J]. TISSUE ENGINEERING, 1999, 5 (06): : 545 - 553
  • [8] Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers
    Athanasiou, KA
    Niederauer, GG
    Agrawal, CM
    [J]. BIOMATERIALS, 1996, 17 (02) : 93 - 102
  • [9] Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components
    Barry, F
    Boynton, RE
    Liu, BS
    Murphy, JM
    [J]. EXPERIMENTAL CELL RESEARCH, 2001, 268 (02) : 189 - 200
  • [10] DEDIFFERENTIATED CHONDROCYTES REEXPRESS THE DIFFERENTIATED COLLAGEN PHENOTYPE WHEN CULTURED IN AGAROSE GELS
    BENYA, PD
    SHAFFER, JD
    [J]. CELL, 1982, 30 (01) : 215 - 224