Silician Magnetite from the Copiapo Nordeste Prospect of Northern Chile and Its Implication for Ore-Forming Conditions of Iron Oxide-Copper-Gold Deposits

被引:7
作者
Gonzalez, Elias [1 ,2 ]
Kojima, Shoji [1 ]
Ichii, Yoshihiko [3 ]
Tanaka, Takayuki [2 ]
Fujimoto, Yoshikazu [2 ]
Ogata, Takeyuki [4 ]
机构
[1] Univ Catolica Norte, Dept Ciencias Geol, Av Angamos 0610, Antofagasta, Chile
[2] Minera Nittetsu Chile Ltda, OHiggins 744,Oficina 607, Copiapo, Chile
[3] Nittetsu Min Consultants Co Ltd 2, Minato Ku, 2-3,Shiba 4 Chome, Tokyo 1080014, Japan
[4] Akita Univ, Int Ctr Res & Educ Mineral & Energy Resources, 1-1 Tegata Gakuen Machi, Akita 0108502, Japan
关键词
silician magnetite; Copiapo Nordeste; iron oxide-copper-gold deposit; micro-X-ray fluorescence; electron probe microanalysis; CHEMICAL-ANALYSIS; MINERALIZATION; EVOLUTION; GENESIS; KIRUNA; FLUIDS; MINE;
D O I
10.3390/min8110529
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Silica-bearing magnetite was recognized in the Copiapo Nordeste prospect as the first documented occurrence in Chilean iron oxide-copper-gold (IOCG) deposits. The SiO2-rich magnetite termed silician magnetite occurs in early calcic to potassic alteration zones as orderly oscillatory layers in polyhedral magnetite and as isolated discrete grains, displaying perceptible optical differences in color and reflectance compared to normal magnetite. Micro-X-ray fluorescence and electron microprobe analyses reveal that silician magnetite has a significant SiO2 content with small amounts of other impure components, such as Al2O3, CaO, MgO, TiO2, and MnO. The oscillatory-zoned magnetite is generally enriched in SiO2 (up to 7.5 wt %) compared to the discrete grains. The formation of silician magnetite is explained by the exchange reactions between 2Fe (III) and Si (IV) + Fe (II), with the subordinate reactions between Fe (III) and Al (III) and between 2Fe (II) and Ca (II) + Mg (II). Silician magnetite with high concentrations of SiO2 (3.8-8.9 wt %) was similarly noted in intrusion-related magmatic-hydrothermal deposits including porphyry- and skarn-type deposits. This characteristic suggests that a hydrothermal system of relatively high-temperature and hypersaline fluids could be a substantial factor in the formation of silician magnetite with high SiO2 contents.
引用
收藏
页数:12
相关论文
共 34 条
[1]  
Arevalo C., 2005, Carta geologica de Chile, serie geologia basica, V91, P54
[2]   Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile [J].
Broughm, Shannon G. ;
Hanchar, John M. ;
Tornos, Fernando ;
Westhues, Anne ;
Attersley, Samuel .
MINERALIUM DEPOSITA, 2017, 52 (08) :1223-1244
[3]   Trace elements in magnetite as petrogenetic indicators [J].
Dare, Sarah A. S. ;
Barnes, Sarah-Jane ;
Beaudoin, Georges ;
Meric, Julien ;
Boutroy, Emilie ;
Potvin-Doucet, Christophe .
MINERALIUM DEPOSITA, 2014, 49 (07) :785-796
[4]   Nanogeochemistry of hydrothermal magnetite [J].
Deditius, Artur P. ;
Reich, Martin ;
Simon, Adam C. ;
Suvorova, Alexandra ;
Knipping, Jaayke ;
Roberts, Malcolm P. ;
Rubanov, Sergey ;
Dodd, Aaron ;
Saunders, Martin .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2018, 173 (06)
[5]   Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types [J].
Dupuis, Celine ;
Beaudoin, Georges .
MINERALIUM DEPOSITA, 2011, 46 (04) :319-335
[6]  
Espinoza S., 1990, SOC GEOLOGY APPL MIN, V8, P395
[7]  
Fournier R.O., 1985, GEOLOGY GEOCHEMISTRY, V2, P45
[9]  
Haschke M, 2017, ADV IMAG ELECT PHYS, V199, P1, DOI 10.1016/bs.aiep.2017.01.001
[10]   Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran [J].
Heidarian, Hassan ;
Lentz, David ;
Alirezaei, Saeed ;
Peighambari, Sima ;
Hall, Douglas .
MINERALOGY AND PETROLOGY, 2016, 110 (06) :927-942