The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santalo Inequalities

被引:6
作者
Gozlan, Nathael [1 ]
机构
[1] Univ Paris, CNRS, MAP5 UMR 8145, F-75006 Paris, France
关键词
MINIMAL VOLUME-PRODUCT; LOGARITHMIC SOBOLEV; TRANSPORTATION COST; CONVEX-BODIES; ZONOIDS;
D O I
10.1093/imrn/rnab087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish dual equivalent forms involving relative entropy, Fisher information, and optimal transport costs of inverse Santalo inequalities. We show in particular that the Mahler conjecture is equivalent to some dimensional lower bound on the deficit in the Gaussian logarithmic Sobolev inequality. We also derive from existing results on inverse Santalo inequalities some sharp lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality. Our proofs rely on duality relations between convex functionals (introduced in [16] and [62]) related to the notion of moment measure.
引用
收藏
页码:13396 / 13446
页数:51
相关论文
共 69 条
[1]   Polytopes of Maximal Volume Product [J].
Alexander, Matthew ;
Fradelizi, Matthieu ;
Zvavitch, Artem .
DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 62 (03) :583-600
[2]  
[Anonymous], 1981, PUBLICATIONES MATH U
[3]  
[Anonymous], 1949, Portugaliae Mathematica
[4]  
[Anonymous], 1993, FUNDAMENTAL PRINCIPL
[5]   The Santalo point of a function, and a functional form of the Santalo inequality [J].
Artstein-Avidan, S ;
Klartag, B ;
Milman, V .
MATHEMATIKA, 2004, 51 (101-02) :33-48
[6]   Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality [J].
Artstein-Avidan, S. ;
Klartag, B. ;
Schuett, C. ;
Werner, E. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :4181-4204
[7]  
Ball K. M., 1987, THESIS U CAMBRIDGE
[8]  
Barthe F, 2013, AM J MATH, V135, P311
[9]  
Berman RobertJ., 2013, Ann. Fac. Sci. Toulouse Math, V22, P649
[10]  
Berndtsson B., 2020, COMPLEX INTEGRALS KU