Instability of Lenticular Vortices: Results from Laboratory Experiments, Linear Stability Analysis and Numerical Simulations

被引:0
|
作者
Lahaye, Noe [1 ,2 ]
Paci, Alexandre [3 ]
Smith, Stefan G. Llewellyn [4 ,5 ]
机构
[1] Campus Univ Beaulieu, INRIA, F-35042 Rennes, France
[2] Campus Univ Beaulieu, IRMAR, F-35042 Rennes, France
[3] Univ Toulouse, CNRS, METEO FRANCE, CNRM, F-31100 Toulouse, France
[4] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
vortex; instability; ocean eddies; numerical simulations; laboratory experiments; SHALLOW-WATER MODEL; POTENTIAL VORTICITY; NONLINEAR EVOLUTION; DENSITY FRONTS; WARM-CORE; 2-LAYER; RINGS; DYNAMICS; VORTEX; EDDIES;
D O I
10.3390/fluids6110380
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The instability of surface lenticular vortices is investigated using a comprehensive suite of laboratory experiments combined with numerical linear stability analysis as well as nonlinear numerical simulations in a two-layer Rotating Shallow Water model. The development of instabilities is discussed and compared between the different methods. The linear stability analysis allows for a clear description of the origin of the instability observed in both the laboratory experiments and numerical simulations. While global qualitative agreement is found, some discrepancies are observed and discussed. Our study highlights that the sensitivity of the instability outcome is related to the initial condition and the lower-layer flow. The inhibition or even suppression of some unstable modes may be explained in terms of the lower-layer potential vorticity profile.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Controlling the breakup of spiralling jets: results from experiments, nonlinear simulations and linear stability analysis
    Kamis, Yavuz Emre
    Prakash, Suriya
    Breugem, Wim-Paul
    Eral, Hueseyin Burak
    JOURNAL OF FLUID MECHANICS, 2023, 956
  • [2] Helical vortices: linear stability analysis and nonlinear dynamics
    Selcuk, C.
    Delbende, I.
    Rossi, M.
    FLUID DYNAMICS RESEARCH, 2018, 50 (01)
  • [3] Remote determination of the shape of Jupiter's vortices from laboratory experiments
    Lemasquerier, Daphne
    Facchini, Giulio
    Favier, Benjamin
    Le Bars, Michael
    NATURE PHYSICS, 2020, 16 (06) : 695 - +
  • [4] Morphology and dynamical stability of self-gravitating vortices Numerical simulations
    Restrepo, S. Rendon
    Barge, P.
    ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [5] Secondary instability of crossflow vortices: validation of the stability theory by direct numerical simulation
    Bonfigli, Giuseppe
    Kloker, Markus
    JOURNAL OF FLUID MECHANICS, 2007, 583 : 229 - 272
  • [6] Linear stability analysis of subaqueous bedforms using direct numerical simulations
    Zgheib, N.
    Balachandar, S.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (02) : 161 - 180
  • [7] A Pore-Scale Model for Permeable Biofilm: Numerical Simulations and Laboratory Experiments
    David Landa-Marbán
    Na Liu
    Iuliu S. Pop
    Kundan Kumar
    Per Pettersson
    Gunhild Bødtker
    Tormod Skauge
    Florin A. Radu
    Transport in Porous Media, 2019, 127 : 643 - 660
  • [8] A Pore-Scale Model for Permeable Biofilm: Numerical Simulations and Laboratory Experiments
    Landa-Marban, David
    Liu, Na
    Pop, Iuliu S.
    Kumar, Kundan
    Pettersson, Per
    Bodtker, Gunhild
    Skauge, Tormod
    Radu, Florin A.
    TRANSPORT IN POROUS MEDIA, 2019, 127 (03) : 643 - 660
  • [9] Linear stability analysis on supersonic streamwise vortices
    Hiejima, Toshihiko
    PHYSICS OF FLUIDS, 2013, 25 (11)
  • [10] Extreme waves in random crossing seas: Laboratory experiments and numerical simulations
    Toffoli, A.
    Bitner-Gregersen, E. M.
    Osborne, A. R.
    Serio, M.
    Monbaliu, J.
    Onorato, M.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38