The evaluation of character Euler double sums

被引:45
作者
Borwein, J. M. [2 ]
Zucker, I. J. [1 ]
Boersma, J. [3 ]
机构
[1] Kings Coll London, Wheatstone Phys Lab, London WC2R 2LS, England
[2] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 3J5, Canada
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
基金
加拿大自然科学与工程研究理事会;
关键词
Euler sums; Dirichlet characters; Riemann zeta function;
D O I
10.1007/s11139-007-9083-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Euler considered sums of the form [GRAPHICS] Here natural generalizations of these sums namely [GRAPHICS] are investigated, where chi(p) and chi(q) are characters, and s and t are positive integers. The cases when p and q are either 1, 2a, 2b or -4 are examined in detail, and closed-form expressions are found for t = 1 and general s in terms of the Riemann zeta function and the Catalan zeta function-the Dirichlet series L(-4)(s) = 1(-s) - 3(-s) + 5(-s) - 7(-s) + center dot center dot center dot. Some results for arbitrary p and q are obtained as well.
引用
收藏
页码:377 / 405
页数:29
相关论文
共 10 条
  • [1] A new method for investigating Euler sums
    Basu, A
    Apostol, TM
    [J]. RAMANUJAN JOURNAL, 2000, 4 (04) : 397 - 419
  • [2] Borwein J., 2004, EXPT MATH COMPUTATIO, DOI DOI 10.1201/9781439864197
  • [3] Euler L., 1775, NOVI COMM ACAD SCI P, V20, P140
  • [4] INFINITE SUMS OF PSI FUNCTIONS
    JORDAN, PF
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (04) : 681 - 683
  • [5] Lewin L., 1981, Polylogarithms and associated functions
  • [6] Nielsen N., 1965, Die Gammafunktion
  • [7] A FORMULA OF RAMANUJAN,S.
    SITARAMACHANDRARAO, R
    [J]. JOURNAL OF NUMBER THEORY, 1987, 25 (01) : 1 - 19
  • [8] Evaluation of double L-values
    Terhune, D
    [J]. JOURNAL OF NUMBER THEORY, 2004, 105 (02) : 275 - 301
  • [9] SOME PROPERTIES OF DIRICHLET L-SERIES
    ZUCKER, IJ
    ROBERTSON, MM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (08): : 1207 - 1214
  • [10] [No title captured]