The Seiberg-Witten equations and the Weinstein conjecture

被引:146
作者
Taubes, Clifford Henry [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02133 USA
关键词
D O I
10.2140/gt.2007.11.2117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M denote a compact, oriented 3-dimensional manifold and let a denote a contact 1-form on M; thus a Lambda da is nowhere zero. This article proves that the vector field that generates the kernel of da has a closed integral curve.
引用
收藏
页码:2117 / 2202
页数:86
相关论文
共 29 条
[21]   On the action spectrum for closed symplectically aspherical manifolds [J].
Schwarz, M .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 193 (02) :419-461
[22]  
Seeley R. T., 1967, Proc. Symp. Pure Math, V10, P288, DOI DOI 10.1090/PSPUM/010/0237943
[23]   AN INFINITE DIMENSIONAL VERSION OF SARDS THEOREM [J].
SMALE, S .
AMERICAN JOURNAL OF MATHEMATICS, 1965, 87 (04) :861-&
[24]  
Taubes C. H., 2000, 1 INT PRESS LECT SER, V2
[25]  
Taubes CH, 1999, J DIFFER GEOM, V51, P203
[26]  
TAUBES CH, ASYMPTOTIC SPECTRAL
[27]  
TAUBES CH, 2000, FIRST INT PRESS LECT, V2, P1
[28]  
Taubes CH, 1995, MATH RES LETT, V2, P221
[29]   HYPOTHESES OF RABINOWITZ PERIODIC ORBIT THEOREMS [J].
WEINSTEIN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (03) :353-358