MF-AV-Net: an open-source deep learning network with multimodal fusion options for artery-vein segmentation in OCT angiography

被引:22
作者
Abtahi, Mansour [1 ]
LE, David [1 ]
Lim, Jennifer I. [2 ]
Yao, Xincheng [1 ,2 ]
机构
[1] Univ Illinois, Dept Biomed Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Ophthalmol & Visual Sci, Chicago, IL 60612 USA
关键词
OPTICAL COHERENCE TOMOGRAPHY; CLASSIFICATION;
D O I
10.1364/BOE.468483
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This study is to demonstrate the effect of multimodal fusion on the performance of deep learning artery-vein (AV) segmentation in optical coherence tomography (OCT) and OCT angiography (OCTA); and to explore OCT/OCTA characteristics used in the deep learning AV segmentation. We quantitatively evaluated multimodal architectures with early and late OCT-OCTA fusions, compared to the unimodal architectures with OCT-only and OCTA-only inputs. The OCTA-only architecture, early OCT-OCTA fusion architecture, and late OCT-OCTA fusion architecture yielded competitive performances. For the 6 mmx6 mm and 3 mmx3 mm datasets, the late fusion architecture achieved an overall accuracy of 96.02% and 94.00%, slightly better than the OCTA-only architecture which achieved an overall accuracy of 95.76% and 93.79%. 6 mmx6 mm OCTA images show AV information at pre-capillary level structure, while 3 mmx3 mm OCTA images reveal AV information at capillary level detail. In order to interpret the deep learning performance, saliency maps were produced to identify OCT/OCTA image characteristics for AV segmentation. Comparative OCT and OCTA saliency maps support the capillary-free zone as one of the possible features for AV segmentation in OCTA. The deep learning network MF-AV-Net used in this study is available on GitHub for open access.(C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4870 / 4888
页数:19
相关论文
共 35 条
[1]  
Abtahi M, GITHUB REPOSITORY 20
[2]   Depth-resolved vascular profile features for artery-vein classification in OCT and OCT angiography of human retina [J].
Adejumo, Tobiloba ;
Kim, Tae-Hoon ;
Le, David ;
Son, Taeyoon ;
Ma, Guangying ;
Yao, Xincheng .
BIOMEDICAL OPTICS EXPRESS, 2022, 13 (02) :1121-1130
[3]   AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography [J].
Alam, Minhaj ;
Le, David ;
Son, Taeyoon ;
Lim, Jennifer, I ;
Yao, Xincheng .
BIOMEDICAL OPTICS EXPRESS, 2020, 11 (09) :5249-5257
[4]   OCT feature analysis guided artery-vein differentiation in OCTA [J].
Alam, Minhaj ;
Toslak, Devrim ;
Lim, Jennifer, I ;
Yao, Xincheng .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (04) :2055-2066
[5]   Differential artery-vein analysis in quantitative retinal imaging: a review [J].
Alam, Minhaj Nur ;
Le, David ;
Yao, Xincheng .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (03) :1102-1119
[6]   Distances From Capillaries to Arterioles or Venules Measured Using OCTA and AOSLO [J].
Arthur, Edmund ;
Elsner, Ann E. ;
Sapoznik, Kaitlyn A. ;
Papay, Joel A. ;
Muller, Matthew S. ;
Burns, Stephen A. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (06) :1833-1844
[7]   Multimodal fusion for multimedia analysis: a survey [J].
Atrey, Pradeep K. ;
Hossain, M. Anwar ;
El Saddik, Abdulmotaleb ;
Kankanhalli, Mohan S. .
MULTIMEDIA SYSTEMS, 2010, 16 (06) :345-379
[8]   Comparisons Between Histology and Optical Coherence Tomography Angiography of the Periarterial Capillary-Free Zone [J].
Balaratnasingam, Chandrakumar ;
An, Dong ;
Sakurada, Yoichi ;
Lee, Cecilia S. ;
Lee, Aaron Y. ;
Mcallister, Ian L. ;
Freund, K. Bailey ;
Sarunic, Marinko ;
Yu, Dao-Yi .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2018, 189 :55-64
[9]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[10]   Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition [J].
Boulahia, Said Yacine ;
Amamra, Abdenour ;
Madi, Mohamed Ridha ;
Daikh, Said .
MACHINE VISION AND APPLICATIONS, 2021, 32 (06)