Disrupted Calcium Signaling in Animal Models of Human Spinocerebellar Ataxia (SCA)

被引:29
作者
Prestori, Francesca [1 ]
Moccia, Francesco [2 ]
D'Angelo, Egidio [1 ,3 ]
机构
[1] Univ Pavia, Dept Brain & Behav Sci, I-27100 Pavia, Italy
[2] Univ Pavia, Dept Biol & Biotechnol Lazzaro Spallanzani, I-27100 Pavia, Italy
[3] IRCCS Mondino Fdn, I-27100 Pavia, Italy
基金
欧盟地平线“2020”;
关键词
spinocerebellar ataxias; Purkinje cells; Ca2+ signaling; PROTEIN-KINASE-C; INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR; DOMINANT CEREBELLAR-ATAXIA; MACHADO-JOSEPH-DISEASE; LONG-TERM DEPRESSION; POLYGLUTAMINE-INDUCED NEURODEGENERATION; METABOTROPIC GLUTAMATE RECEPTORS; PURKINJE-CELL SYNAPSE; PKC-GAMMA; TRANSGENIC MICE;
D O I
10.3390/ijms21010216
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 40 autosomal-dominant genetic and neurodegenerative diseases characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly undaerstood. Emerging research suggests that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells. Ca2+ signaling in Purkinje cells is important for normal cellular function as these neurons express a variety of Ca2+ channels, Ca2+-dependent kinases and phosphatases, and Ca2+-binding proteins to tightly maintain Ca2+ homeostasis and regulate physiological Ca2+-dependent processes. Abnormal Ca2+ levels can activate toxic cascades leading to characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells via inhibitory signals; thus, Purkinje cell dysfunction or degeneration would partially or completely impair the cerebellar output in SCAs. In the absence of the inhibitory signal emanating from Purkinje cells, DCN will become more excitable, thereby affecting the motor areas receiving DCN input and resulting in uncoordinated movements. An outstanding advantage in studying the pathogenesis of SCAs is represented by the availability of a large number of animal models which mimic the phenotype observed in humans. By mainly focusing on mouse models displaying mutations or deletions in genes which encode for Ca2+ signaling-related proteins, in this review we will discuss the several pathogenic mechanisms related to deranged Ca2+ homeostasis that leads to significant Purkinje cell degeneration and dysfunction.
引用
收藏
页数:28
相关论文
共 50 条
[31]   Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2) [J].
Gierga, K ;
Bürk, K ;
Bauer, M ;
Diaz, GO ;
Auburger, G ;
Schultz, C ;
Vuksic, M ;
Schöls, L ;
de Vos, RAI ;
Braak, H ;
Deller, T ;
Rüb, U .
ACTA NEUROPATHOLOGICA, 2005, 109 (06) :617-631
[32]   Pathoanatomy of Cerebellar Degeneration in Spinocerebellar Ataxia Type 2 (SCA2) and Type 3 (SCA3) [J].
Scherzed, W. ;
Brunt, E. R. ;
Heinsen, H. ;
de Vos, R. A. ;
Seidel, K. ;
Buerk, K. ;
Schoels, L. ;
Auburger, G. ;
Del Turco, D. ;
Deller, T. ;
Korf, H. W. ;
den Dunnen, W. F. ;
Rueb, U. .
CEREBELLUM, 2012, 11 (03) :749-760
[33]   Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2) [J].
K. Gierga ;
K. Bürk ;
M. Bauer ;
G. Orozco Diaz ;
G. Auburger ;
C. Schultz ;
M. Vuksic ;
L. Schöls ;
R. A. I. de Vos ;
H. Braak ;
T. Deller ;
U. Rüb .
Acta Neuropathologica, 2005, 109 :617-631
[34]   Mutation analysis of 6 spinocerebellar ataxia (SCA) types in patients from southern Turkey [J].
Pazarci, Percin ;
Kasap, Halil ;
Koc, Ayse Filiz ;
Altunbasak, Sakir ;
Erkoc, Mehmet Ali .
TURKISH JOURNAL OF MEDICAL SCIENCES, 2015, 45 (06) :1228-1233
[35]   Neuropsychological Features of Patients with Spinocerebellar Ataxia (SCA) Types 1, 2, 3, and 6 [J].
Klinke, Ina ;
Minnerop, Martina ;
Schmitz-Huebsch, Tanja ;
Hendriks, Marc ;
Klockgether, Thomas ;
Wuellner, Ullrich ;
Helmstaedter, Christoph .
CEREBELLUM, 2010, 9 (03) :433-442
[36]   Molecular Mechanisms and Future Therapeutics for Spinocerebellar Ataxia Type 31 (SCA31) [J].
Ishikawa, Kinya ;
Nagai, Yoshitaka .
NEUROTHERAPEUTICS, 2019, 16 (04) :1106-1114
[37]   Insight Into Spinocerebellar Ataxia Type 31 (SCA31) From Drosophila Model [J].
Ishiguro, Taro ;
Nagai, Yoshitaka ;
Ishikawa, Kinya .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[38]   Different mechanism of vocal cord paralysis between spinocerebellar ataxia (SCA 1 and SCA 3) and multiple system atrophy [J].
Isozaki, E ;
Naito, R ;
Kanda, T ;
Mizutani, T ;
Hirai, S .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2002, 197 (1-2) :37-43
[39]   Analysis of SCA8, SCA10, SCA12, SCA17 and SCA19 in patients with unknown spinocerebellar ataxia: a Thai multicentre study [J].
Choubtum, Lulin ;
Witoonpanich, Pirada ;
Hanchaiphiboolkul, Suchat ;
Bhidayasiri, Roongroj ;
Jitkritsadakul, Onanong ;
Pongpakdee, Sunsanee ;
Wetchaphanphesat, Suppachok ;
Boonkongchuen, Pairoj ;
Pulkes, Teeratorn .
BMC NEUROLOGY, 2015, 15
[40]   Reelin is a target of polyglutamine expanded ataxin-7 in human spinocerebellar ataxia type 7 (SCA7) astrocytes [J].
McCullough, Shaun D. ;
Xu, Xiaojiang ;
Dent, Sharon Y. R. ;
Bekiranov, Stefan ;
Roeder, Robert G. ;
Grant, Patrick A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (52) :21319-21324