THREE-DIMENSIONAL LORENTZIAN HOMOGENEOUS RICCI SOLITONS

被引:77
作者
Brozos-Vazquez, M. [1 ]
Calvaruso, G. [2 ]
Garcia-Rio, E. [3 ]
Gavino-Fernandez, S. [3 ]
机构
[1] Univ A Coruna, Dept Math, EU Politecn, Ferrol, Spain
[2] Univ Salento, Dipartimento Matemat E De Giorgi, Lecce, Italy
[3] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
关键词
MANIFOLDS; METRICS;
D O I
10.1007/s11856-011-0124-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study three-dimensional Lorentzian homogeneous Ricci solitons, proving the existence of shrinking, expanding and steady Ricci solitons. For all the non-trivial examples, the Ricci operator is not diagonalizable and has three equal eigenvalues.
引用
收藏
页码:385 / 403
页数:19
相关论文
共 21 条
[1]   Ricci solitons and Einstein-scalar field theory [J].
Akbar, M. M. ;
Woolgar, E. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (05)
[2]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[3]  
Brozos-Vazquez M., 2009, Synthesis Lectures on Mathematics and Statistics, V5
[4]   Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds [J].
Calvaruso, G. .
GEOMETRIAE DEDICATA, 2007, 127 (01) :99-119
[5]   Homogeneous structures on three-dimensional Lorentzian manifolds [J].
Calvaruso, Giovanni .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (04) :1279-1291
[6]   On the Ricci operator of locally homogeneous Lorentzian 3-manifolds [J].
Calvaruso, Giovanni ;
Kowalski, Oldrich .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (01) :124-139
[7]   Singularity theorems and the Lorentzian splitting theorem for the Bakry-Emery-Ricci tensor [J].
Case, Jeffrey S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (03) :477-490
[8]   Three-dimensional Lorentz manifolds admitting a parallel null vector field [J].
Chaichi, M ;
García-Río, E ;
Vázquez-Abal, ME .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (04) :841-850
[9]  
Cordero L.A., 1997, Rend. Mat., Serie VII, V17, P129
[10]  
di Cerbo L.F., ARXIV07110465V1