A Multilevel Stochastic Collocation Algorithm for Optimization of PDEs with Uncertain Coefficients

被引:26
|
作者
Kouri, D. P. [1 ]
机构
[1] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS-1320, Albuquerque, NM 87185 USA
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2014年 / 2卷 / 01期
关键词
PDE optimization; multilevel; uncertainty quantification; sparse grids; PARTIAL-DIFFERENTIAL-EQUATIONS; TRUST-REGION METHODS; MULTIGRID METHODS; INFORMATION;
D O I
10.1137/130915960
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we apply the MG/OPT framework to a multilevel-in-sample-space discretization of optimization problems governed by PDEs with uncertain coefficients. The MG/OPT algorithm is a template for the application of multigrid to deterministic PDE optimization problems. We employ MG/OPT to exploit the hierarchical structure of sparse grids in order to formulate a multilevel stochastic collocation algorithm. The algorithm is provably first-order convergent under standard assumptions on the hierarchy of discretized objective functions as well as on the optimization routines used as pre- and postsmoothers. We present explicit bounds on the total number of PDE solves and an upper bound on the error for one V-cycle of the MG/OPT algorithm applied to a linear quadratic control problem. We provide numerical results that confirm the theoretical bound on the number of PDE solves and show a dramatic reduction in the total number of PDE solves required to solve these optimization problems when compared with standard optimization routines applied to a fixed sparse-grid discretization of the same problem.
引用
收藏
页码:55 / 81
页数:27
相关论文
共 50 条
  • [41] Efficient Adaptive Stochastic Collocation Strategies for Advection-Diffusion Problems with Uncertain Inputs
    Kent, Benjamin M.
    Powell, Catherine E.
    Silvester, David J.
    Zimon, Malgorzata J.
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [42] A two-level stochastic collocation method for semilinear elliptic equations with random coefficients
    Chen, Luoping
    Zheng, Bin
    Lin, Guang
    Voulgarakis, Nikolaos
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 315 : 195 - 207
  • [43] Using inexact gradients in a multilevel optimization algorithm
    Lewis, Robert Michael
    Nash, Stephen G.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (01) : 39 - 61
  • [44] An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise
    Qi, Xiao
    Azaiez, Mejdi
    Huang, Can
    Xu, Chuanju
    AIMS MATHEMATICS, 2022, 7 (12): : 20684 - 20710
  • [45] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Barth, Andrea
    Schwab, Christoph
    Zollinger, Nathaniel
    NUMERISCHE MATHEMATIK, 2011, 119 (01) : 123 - 161
  • [46] A MODEL REDUCTION METHOD FOR MULTISCALE ELLIPTIC PDEs WITH RANDOM COEFFICIENTS USING AN OPTIMIZATION APPROACH
    Hou, Thomas Y.
    Ma, Dingjiong
    Zhang, Zhiwen
    MULTISCALE MODELING & SIMULATION, 2019, 17 (02): : 826 - 853
  • [47] FINITE ELEMENT ERROR ANALYSIS OF ELLIPTIC PDES WITH RANDOM COEFFICIENTS AND ITS APPLICATION TO MULTILEVEL MONTE CARLO METHODS
    Charrier, J.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 322 - 352
  • [48] Numerical solution of space-time fractional PDEs with variable coefficients using shifted Ja- cobi collocation method
    Bonyadi, Samira
    Mahmoudi, Yaghoub
    Lakestani, Mehrdad
    Rad, Mohammad Jahangiri
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2023, 11 (01): : 81 - 94
  • [49] Topology optimization considering material and geometric uncertainties using stochastic collocation methods
    Lazarov, Boyan S.
    Schevenels, Mattias
    Sigmund, Ole
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2012, 46 (04) : 597 - 612
  • [50] Topology optimization considering material and geometric uncertainties using stochastic collocation methods
    Boyan S. Lazarov
    Mattias Schevenels
    Ole Sigmund
    Structural and Multidisciplinary Optimization, 2012, 46 : 597 - 612