A Multilevel Stochastic Collocation Algorithm for Optimization of PDEs with Uncertain Coefficients

被引:26
|
作者
Kouri, D. P. [1 ]
机构
[1] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS-1320, Albuquerque, NM 87185 USA
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2014年 / 2卷 / 01期
关键词
PDE optimization; multilevel; uncertainty quantification; sparse grids; PARTIAL-DIFFERENTIAL-EQUATIONS; TRUST-REGION METHODS; MULTIGRID METHODS; INFORMATION;
D O I
10.1137/130915960
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we apply the MG/OPT framework to a multilevel-in-sample-space discretization of optimization problems governed by PDEs with uncertain coefficients. The MG/OPT algorithm is a template for the application of multigrid to deterministic PDE optimization problems. We employ MG/OPT to exploit the hierarchical structure of sparse grids in order to formulate a multilevel stochastic collocation algorithm. The algorithm is provably first-order convergent under standard assumptions on the hierarchy of discretized objective functions as well as on the optimization routines used as pre- and postsmoothers. We present explicit bounds on the total number of PDE solves and an upper bound on the error for one V-cycle of the MG/OPT algorithm applied to a linear quadratic control problem. We provide numerical results that confirm the theoretical bound on the number of PDE solves and show a dramatic reduction in the total number of PDE solves required to solve these optimization problems when compared with standard optimization routines applied to a fixed sparse-grid discretization of the same problem.
引用
收藏
页码:55 / 81
页数:27
相关论文
共 50 条
  • [21] A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data
    Teckentrup, A. L.
    Jantsch, P.
    Webster, C. G.
    Gunzburger, M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 1046 - 1074
  • [22] A MULTISCALE DATA-DRIVEN STOCHASTIC METHOD FOR ELLIPTIC PDEs WITH RANDOM COEFFICIENTS
    Zhang, Zhiwen
    Ci, Maolin
    Hou, Thomas Y.
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 173 - 204
  • [23] MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC ELLIPTIC MULTISCALE PDES
    Abdulle, Assyr
    Barth, Andrea
    Schwab, Christoph
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1033 - 1070
  • [24] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15
  • [25] An adaptive sparse grid method for elliptic PDEs with stochastic coefficients
    Erhel, J.
    Mghazli, Z.
    Oumouni, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 392 - 407
  • [26] Uncertain eigenvalue analysis by the sparse grid stochastic collocation method
    J. C. Lan
    X. J. Dong
    Z. K. Peng
    W. M. Zhang
    G. Meng
    Acta Mechanica Sinica, 2015, 31 : 545 - 557
  • [27] Uncertain eigenvalue analysis by the sparse grid stochastic collocation method
    Lan, J. C.
    Dong, X. J.
    Peng, Z. K.
    Zhang, W. M.
    Meng, G.
    ACTA MECHANICA SINICA, 2015, 31 (04) : 545 - 557
  • [28] Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients
    Beck, Joakim
    Nobile, Fabio
    Tamellini, Lorenzo
    Tempone, Raul
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (04) : 732 - 751
  • [29] Stochastic Collocation Methods for Nonlinear Parabolic Equations with Random Coefficients
    Barajas-Solano, David A.
    Tartakovsky, Daniel M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 475 - 494
  • [30] MG/OPT AND MULTILEVEL MONTE CARLO FOR ROBUST OPTIMIZATION OF PDEs
    Van Barel, Andreas
    Vandewalle, Stefan
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 1850 - 1876