A Multilevel Stochastic Collocation Algorithm for Optimization of PDEs with Uncertain Coefficients

被引:27
作者
Kouri, D. P. [1 ]
机构
[1] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS-1320, Albuquerque, NM 87185 USA
关键词
PDE optimization; multilevel; uncertainty quantification; sparse grids; PARTIAL-DIFFERENTIAL-EQUATIONS; TRUST-REGION METHODS; MULTIGRID METHODS; INFORMATION;
D O I
10.1137/130915960
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we apply the MG/OPT framework to a multilevel-in-sample-space discretization of optimization problems governed by PDEs with uncertain coefficients. The MG/OPT algorithm is a template for the application of multigrid to deterministic PDE optimization problems. We employ MG/OPT to exploit the hierarchical structure of sparse grids in order to formulate a multilevel stochastic collocation algorithm. The algorithm is provably first-order convergent under standard assumptions on the hierarchy of discretized objective functions as well as on the optimization routines used as pre- and postsmoothers. We present explicit bounds on the total number of PDE solves and an upper bound on the error for one V-cycle of the MG/OPT algorithm applied to a linear quadratic control problem. We provide numerical results that confirm the theoretical bound on the number of PDE solves and show a dramatic reduction in the total number of PDE solves required to solve these optimization problems when compared with standard optimization routines applied to a fixed sparse-grid discretization of the same problem.
引用
收藏
页码:55 / 81
页数:27
相关论文
共 46 条
[1]  
[Anonymous], 2000, 8 S MULT AN OPT
[2]  
[Anonymous], 1963, Dokl. Akad. Nauk SSSR
[3]  
[Anonymous], 1996, Iterative Methods for Sparse Linear Systems
[4]   Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (12-16) :1251-1294
[5]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[6]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[7]   High dimensional polynomial interpolation on sparse grids [J].
Barthelmann, V ;
Novak, E ;
Ritter, K .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) :273-288
[8]   An adaptive Monte Carlo algorithm for computing mixed logit estimators [J].
Bastin, Fabian ;
Cirillo, Cinzia ;
Toint, Philippe L. .
COMPUTATIONAL MANAGEMENT SCIENCE, 2006, 3 (01) :55-79
[9]   Optimal control formulation for determining optical flow [J].
Borzì, A ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (03) :818-847
[10]   Multigrid methods for parabolic distributed optimal control problems [J].
Borzì, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (02) :365-382