Branes are waves and monopoles

被引:57
作者
Berman, David S. [1 ]
Rudolph, Felix J. [1 ]
机构
[1] Queen Mary Univ London, Sch Phys, Ctr Res String Theory, London E1 4NS, England
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2015年 / 05期
关键词
p-branes; M-Theory; String Duality; DUALITY ROTATIONS; T-DUALITY; E-11;
D O I
10.1007/JHEP05(2015)015
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In a recent paper it was shown that fundamental strings are null waves in Double Field Theory. Similarly, membranes are waves in exceptional extended geometry. Here the story is continued by showing how various branes are Kaluza-Klein monopoles of these higher dimensional theories. Examining the specific case of the E-7 exceptional extended geometry, we see that all branes are both waves and monopoles. Along the way we discuss the O(d, d) transformation of localized brane solutions not associated to an isometry and how true T-duality emerges in Double Field Theory when the background possesses isometries.
引用
收藏
页数:34
相关论文
共 76 条
  • [1] Aharony O., 1998, JHEP, V10, P004
  • [2] Double field theory: a pedagogical review
    Aldazabal, Gerardo
    Marques, Diego
    Nunez, Carmen
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (16)
  • [3] Strings and branes are waves
    Berkeley, Joel
    Berman, David S.
    Rudolph, Felix J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [4] Berman D. S., ARXIV14122768
  • [5] M-theory brane deformations
    Berman, David S.
    Tadrowski, Laura C.
    [J]. NUCLEAR PHYSICS B, 2008, 795 (1-2) : 201 - 229
  • [6] Duality symmetric string and M-theory
    Berman, David S.
    Thompson, Daniel C.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 566 : 1 - 60
  • [7] Global aspects of double geometry
    Berman, David S.
    Cederwall, Martin
    Perry, Malcolm J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09): : 1 - 19
  • [8] The OD,D geometry of string theory
    Berman, David S.
    Blair, Chris D. A.
    Malek, Emanuel
    Perry, Malcolm J.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (15):
  • [9] The gauge structure of generalised diffeomorphisms
    Berman, David S.
    Cederwall, Martin
    Kleinschmidt, Axel
    Thompson, Daniel C.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (01):
  • [10] Duality invariant actions and generalised geometry
    Berman, David S.
    Godazgar, Hadi
    Perry, Malcolm J.
    West, Peter
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (02):