Characterization of Commercial Gas Diffusion Layers (GDL) by Liquid Extrusion Porometry (LEP) and Gas Liquid Displacement Porometry (GLDP)

被引:4
作者
Peinador, Rene I. [1 ]
Abba, Oumaima [2 ]
Calvo, Jose I. [3 ,4 ,5 ]
机构
[1] Inst Filtrat & Tech Separat IFTS, Rue Marcel Pagnol, F-47510 Foulayronnes, France
[2] Univ Toulouse III Paul Sabatier, Fac Sci & Ingn FSI, Dept Genie Procedes & Bioprocedes, F-31400 Toulouse, France
[3] Univ Valladolid, Escuela Tecn Super Ingn Agr ETSIIAA, Dept Fis Aplicada, Palencia 34071, Spain
[4] CSIC, Associated Res Unit, Surfaces & Porous Mat SMAP, UVainnova Bldg,Paseo Belen 11, Valladolid 47071, Spain
[5] Univ Valladolid, Inst Sustainable Proc ISP, Dr Mergelina S-N, Valladolid 47071, Spain
关键词
membrane characterization; pore-size distribution (PSD); capillary pressure; GDL; LEP; MEMBRANE FUEL-CELLS; SOLAR-HYDROGEN SYSTEMS; HEAT; OPTIMIZATION; PERFORMANCE; FOCUS; AREA;
D O I
10.3390/membranes12020212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This works aims to study the porous characterization of several commercial Gas Diffusion Layers (GDL). Three carbon-based porous GDL featuring a highly rigid microstructure of interconnected pores of several manufacturers were analyzed. Gas Liquid Displacement Porometry (GLDP) and Liquid Extrusion Porometry (LEP) have been used to obtain their pore size distributions (PSD) and the mean and mode pore diameters (d(avg) and d(mod)), by means of a gas/liquid and extrusion porometer developed at IFTS. N-dodecane liquid has been used to completely wet the GDL's assuring penetration of the liquid into the carbon fibrous structure. The results demonstrated the accuracy of the setup on characterizing GDL in the Particle Filtration (PF) range by GLDP and LEP, with reasonable agreements of resulting PSD and average sizes between both techniques when GLDP and LEP results are compared. Differences can be explained in terms of the high pore connectivity of these kinds of structures.
引用
收藏
页数:13
相关论文
共 41 条
  • [11] Gas diffusion layer for proton exchange membrane fuel cells-A review
    Cindrella, L.
    Kannan, A. M.
    Lin, J. F.
    Saminathan, K.
    Ho, Y.
    Lin, C. W.
    Wertz, J.
    [J]. JOURNAL OF POWER SOURCES, 2009, 194 (01) : 146 - 160
  • [12] Review of cell performance in anion exchange membrane fuel cells
    Dekel, Dario R.
    [J]. JOURNAL OF POWER SOURCES, 2018, 375 : 158 - 169
  • [13] Frischauf N, 2016, WOODHEAD PUBL SER EN, P87, DOI 10.1016/B978-1-78242-364-5.00005-1
  • [14] Wettability and capillary behavior of fibrous gas diffusion media for polymer electrolyte membrane fuel cells
    Gostick, Jeff T.
    Ioannidis, Marios A.
    Fowler, Michael W.
    Pritzker, Mark D.
    [J]. JOURNAL OF POWER SOURCES, 2009, 194 (01) : 433 - 444
  • [15] PEM fuel cell heat recovery for preheating inlet air in standalone solar-hydrogen systems for telecommunication applications: An exergy analysis
    Huy Quoc Nguyen
    Aris, Asma Mohamad
    Shabani, Bahman
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) : 2987 - 3003
  • [16] Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach
    Islam, Mohammad Rafiqul
    Shabani, Bahman
    Rosengarten, Gary
    [J]. APPLIED ENERGY, 2016, 178 : 660 - 671
  • [17] A technical review on gas diffusion, mechanism and medium of PEM fuel cell
    Jayakumar, Arunkumar
    Sethu, Sundar Pethaiah
    Ramos, Maximiano
    Robertson, John
    Al-Jumaily, Ahmed
    [J]. IONICS, 2015, 21 (01) : 1 - 18
  • [18] Jena A., 2004, P 41 POWER SOURCES C
  • [19] Advances in Pore Structure Evaluation by Porometry
    Jena, Akshaya
    Gupta, Krishna
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2010, 33 (08) : 1241 - 1250
  • [20] Water transport in polymer electrolyte membrane fuel cells
    Jiao, Kui
    Li, Xianguo
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (03) : 221 - 291