Characterization of Commercial Gas Diffusion Layers (GDL) by Liquid Extrusion Porometry (LEP) and Gas Liquid Displacement Porometry (GLDP)

被引:4
作者
Peinador, Rene I. [1 ]
Abba, Oumaima [2 ]
Calvo, Jose I. [3 ,4 ,5 ]
机构
[1] Inst Filtrat & Tech Separat IFTS, Rue Marcel Pagnol, F-47510 Foulayronnes, France
[2] Univ Toulouse III Paul Sabatier, Fac Sci & Ingn FSI, Dept Genie Procedes & Bioprocedes, F-31400 Toulouse, France
[3] Univ Valladolid, Escuela Tecn Super Ingn Agr ETSIIAA, Dept Fis Aplicada, Palencia 34071, Spain
[4] CSIC, Associated Res Unit, Surfaces & Porous Mat SMAP, UVainnova Bldg,Paseo Belen 11, Valladolid 47071, Spain
[5] Univ Valladolid, Inst Sustainable Proc ISP, Dr Mergelina S-N, Valladolid 47071, Spain
关键词
membrane characterization; pore-size distribution (PSD); capillary pressure; GDL; LEP; MEMBRANE FUEL-CELLS; SOLAR-HYDROGEN SYSTEMS; HEAT; OPTIMIZATION; PERFORMANCE; FOCUS; AREA;
D O I
10.3390/membranes12020212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This works aims to study the porous characterization of several commercial Gas Diffusion Layers (GDL). Three carbon-based porous GDL featuring a highly rigid microstructure of interconnected pores of several manufacturers were analyzed. Gas Liquid Displacement Porometry (GLDP) and Liquid Extrusion Porometry (LEP) have been used to obtain their pore size distributions (PSD) and the mean and mode pore diameters (d(avg) and d(mod)), by means of a gas/liquid and extrusion porometer developed at IFTS. N-dodecane liquid has been used to completely wet the GDL's assuring penetration of the liquid into the carbon fibrous structure. The results demonstrated the accuracy of the setup on characterizing GDL in the Particle Filtration (PF) range by GLDP and LEP, with reasonable agreements of resulting PSD and average sizes between both techniques when GLDP and LEP results are compared. Differences can be explained in terms of the high pore connectivity of these kinds of structures.
引用
收藏
页数:13
相关论文
共 41 条
  • [1] Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images
    Agaesse, Tristan
    Lamibrac, Adrien
    Buchi, Felix N.
    Pauchet, Joel
    Prat, Marc
    [J]. JOURNAL OF POWER SOURCES, 2016, 331 : 462 - 474
  • [2] [Anonymous], 2014, WORLD EN OUTL 2014
  • [3] Sustainable Power Supply Solutions for Off-Grid Base Stations
    Aris, Asma Mohamad
    Shabani, Bahman
    [J]. ENERGIES, 2015, 8 (10) : 10904 - 10941
  • [4] Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review
    Arvay, A.
    Yli-Rantala, E.
    Liu, C. -H.
    Peng, X. -H.
    Koski, P.
    Cindrella, L.
    Kauranen, P.
    Wilde, P. M.
    Kannan, A. M.
    [J]. JOURNAL OF POWER SOURCES, 2012, 213 : 317 - 337
  • [5] Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: Towards 100% renewable heat and power supply to standalone applications
    Assaf, Jihane
    Shabani, Bahman
    [J]. ENERGY, 2018, 157 : 862 - 876
  • [6] Multi-objective sizing optimisation of a solar-thermal system integrated with a solar-hydrogen combined heat and power system, using genetic algorithm
    Assaf, Jihane
    Shabani, Bahman
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2018, 164 : 518 - 532
  • [7] Barbir F., 2013, PEM FUEL CELLS, P73, DOI DOI 10.1016/B978-0-12-387710-9.00004-7
  • [8] On the effect of gas diffusion layers hydrophobicity on direct methanol fuel cell performance and degradation
    Bresciani, F.
    Rabissi, C.
    Zago, M.
    Marchesi, R.
    Casalegno, A.
    [J]. JOURNAL OF POWER SOURCES, 2015, 273 : 680 - 687
  • [9] Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells
    Chan, Carl
    Zamel, Nada
    Li, Xianguo
    Shen, Jun
    [J]. ELECTROCHIMICA ACTA, 2012, 65 : 13 - 21
  • [10] Probing liquid distribution in partially saturated porous materials with hydraulic admittance
    Cheung, P.
    Fairweather, J. F.
    Schwartz, D. T.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (09)