An adaptive order Godunov type central scheme

被引:0
|
作者
Tadmor, E [1 ]
Tanner, J [1 ]
机构
[1] Univ Maryland, Dept Math, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Traditionally, high order Godunov-type central schemes employ local polynomial reconstructions. These reconstructions avoid transfer of information across discontinuities through nonlinear limiters which act as local edge detectors. Here we introduce an adaptive method which employ global edge detection to ensure that information is extracted in the direction of smoothness while maintaining computational stability. Additionally, the global edge detection substantially reduces the computational cost. The reconstruction incorporates the largest symmetric stencil possible without crossing discontinuities. Consequently, the spatial order of accuracy is proportional to the number of cells to the nearest discontinuity, reaching exponential order at the interior of regions of smoothness.
引用
收藏
页码:871 / 880
页数:10
相关论文
共 50 条
  • [1] A second order godunov-type scheme for naval hydrodynamics
    Di Mascio, A
    Broglia, R
    Favini, B
    GODUNOV METHODS: THEORY AND APPLICATIONS, 2001, : 253 - 261
  • [2] A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics
    Fromang, S.
    Hennebelle, P.
    Teyssier, R.
    ASTRONOMY & ASTROPHYSICS, 2006, 457 (02) : 371 - 384
  • [3] A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics
    Fromang, S.
    Hennebelle, P.
    Teyssier, R.
    Astronomy and Astrophysics, 1600, 457 (02): : 371 - 384
  • [4] Adaptive Q-tree Godunov-type scheme for shallow water equations
    Rogers, B
    Fujihara, M
    Borthwick, AGL
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 35 (03) : 247 - 280
  • [5] A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical and geophysical MHD
    Teyssier, Romain
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2007, 101 (3-4): : 199 - 225
  • [7] A high-order Godunov-type scheme for shock interactions in ideal magnetohydrodynamics
    Dai, WL
    Woodward, PR
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (04): : 957 - 981
  • [8] A Godunov-type scheme for relativistic magnetohydrodynamics
    Komissarov, SS
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 303 (02) : 343 - 366
  • [9] Second-order Godunov-type scheme for reactive flow calculations on moving meshes
    Azarenok, BN
    Tang, T
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (01) : 48 - 80
  • [10] A 2ND-ORDER GODUNOV-TYPE SCHEME FOR COMPRESSIBLE FLUID-DYNAMICS
    BENARTZI, M
    FALCOVITZ, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) : 1 - 32