mvord: An R Package for Fitting Multivariate Ordinal Regression Models

被引:44
|
作者
Hirk, Rainer [1 ]
Hornik, Kurt [1 ]
Vana, Laura [1 ]
机构
[1] WU Wirtschaftsuniv Wien, Inst Stat & Math, Dept Finance Accounting & Stat, A-1020 Vienna, Austria
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 93卷 / 04期
关键词
composite likelihood estimation; correlated ordinal data; multivariate ordinal logit regression model; multivariate ordinal probit regression model; R; LIKELIHOOD INFERENCE; DEBT;
D O I
10.18637/jss.v093.i04
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [31] R2GUESS: A Graphics Processing Unit-Based R Package for Bayesian Variable Selection Regression of Multivariate Responses
    Liquet, Benoit
    Bottolo, Leonardo
    Campanella, Gianluca
    Richardson, Sylvia
    Chadeau-Hyam, Marc
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 69 (02):
  • [32] Modelling monotonic effects of ordinal predictors in Bayesian regression models
    Burkner, Paul-Christian
    Charpentier, Emmanuel
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2020, 73 (03) : 420 - 451
  • [33] An R Package for Dynamic Linear Models
    Petris, Giovanni
    JOURNAL OF STATISTICAL SOFTWARE, 2010, 36 (12): : 1 - 16
  • [34] The R Package groc for Generalized Regression on Orthogonal Components
    Bilodeau, Martin
    de Micheaux, Pierre Lafaye
    Mahdi, Smail
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 65 (01): : 1 - 29
  • [35] cdfquantreg: An R Package for CDF-Quantile Regression
    Shou, Yiyun
    Smithson, Michael
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 88 (01): : 1 - 30
  • [36] Iterative Bias Reduction Multivariate Smoothing in R: The ibr Package
    Cornillon, Pierre-Andre
    Hengartner, Nicolas
    Matzner-Lober, Eric
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (09):
  • [37] Multivariate analysis of mixed data. The R Package PCAmixdata
    Chavent, Marie
    Kuentz, Vanessa
    Labenne, Amaury
    Saracco, Jerome
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 606 - 645
  • [38] Multivariate Locally Stationary Wavelet Analysis with the mvLSW R Package
    Taylor, Simon A. C.
    Park, Timothy
    Eckley, Idris A.
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 90 (11):
  • [39] Sample selection models in R: Package sampleSelection
    Toomet, Ott
    Henningsen, Arne
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (07): : 1 - 23
  • [40] stm: An R Package for Structural Topic Models
    Roberts, Margaret E.
    Stewart, Brandon M.
    Tingley, Dustin
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (02): : 1 - 40