mvord: An R Package for Fitting Multivariate Ordinal Regression Models

被引:44
|
作者
Hirk, Rainer [1 ]
Hornik, Kurt [1 ]
Vana, Laura [1 ]
机构
[1] WU Wirtschaftsuniv Wien, Inst Stat & Math, Dept Finance Accounting & Stat, A-1020 Vienna, Austria
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 93卷 / 04期
关键词
composite likelihood estimation; correlated ordinal data; multivariate ordinal logit regression model; multivariate ordinal probit regression model; R; LIKELIHOOD INFERENCE; DEBT;
D O I
10.18637/jss.v093.i04
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [21] The forestecology R package for fitting and assessing neighborhood models of the effect of interspecific competition on the growth of trees
    Kim, Albert Y.
    Allen, David N.
    Couch, Simon P.
    ECOLOGY AND EVOLUTION, 2021, 11 (22): : 15556 - 15572
  • [22] Fitting Prediction Rule Ensembles with R Package pre
    Fokkema, Marjolein
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 92 (12): : 1 - 30
  • [23] Mecor: An R package for measurement error correction in linear regression models with a continuous outcome
    Nab, Linda
    van Smeden, Maarten
    Keogh, Ruth H.
    Groenwold, Rolf H. H.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208
  • [24] truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models
    Karlsson, Maria
    Lindmark, Anita
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (14): : 1 - 19
  • [25] Fitting Diffusion Item Response Theory Models for Responses and Response Times Using the R Package diffIRT
    Molenaar, Dylan
    Tuerlinckx, Francis
    van der Maas, Han L. J.
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 66 (04): : 1 - 34
  • [26] A Toolbox for Nonlinear Regression in R: The Package nlstools
    Baty, Florent
    Ritz, Christian
    Charles, Sandrine
    Brutsche, Martin
    Flandrois, Jean-Pierre
    Delignette-Muller, Marie-Laure
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 66 (05): : 1 - 21
  • [27] npbr: A Package for Nonparametric Boundary Regression in R
    Daouia, Abdelaati
    Laurent, Thibault
    Noh, Hohsuk
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 79 (09):
  • [28] PCovR: An R Package for Principal Covariates Regression
    Vervloet, Marlies
    Kiers, Henk A. L.
    Van den Noortgate, Wim
    Ceulemans, Eva
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 65 (08): : 1 - 14
  • [29] rpartOrdinal: An R Package for Deriving a Classification Tree for Predicting an Ordinal Response
    Archer, Kellie J.
    JOURNAL OF STATISTICAL SOFTWARE, 2010, 34 (07): : 1 - 17
  • [30] Constructing Multivariate Survival Trees: The MST Package for R
    Calhoun, Peter
    Su, Xiaogang
    Nunn, Martha
    Fan, Juanjuan
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 83 (12): : 1 - 21