Well-posedness of the Cauchy problem for Ostrovsky, Stepanyams and Tsimring equation with low regularity data

被引:8
|
作者
Zhao, Xiangqing [1 ]
Cui, Shangbin [2 ]
机构
[1] Zhejiang Ocean Univ, Dept Math, Zhoushan 316000, Zhejiang, Peoples R China
[2] Sun Yat Sen Univ, Inst Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
OST equation; initial value problem; local well-posedness; global well-posedness;
D O I
10.1016/j.jmaa.2008.03.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
this paper we prove that the initial value problem of the OST equation u(t) + u(xxx) + eta(Hu(x) + Hu(xxx)) + uu(x) = 0 (x is an element of R, t >= 0), where eta > 0 and H denotes the usual Hilbert transformation, is locally well-posed in the Sobolev space H-s(R) when s > -3/4, and globally well-posed in H-s(R) when s >= 0. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:778 / 787
页数:10
相关论文
共 50 条
  • [31] Sharp well-posedness for the Cauchy problem of the two dimensional quadratic nonlinear Schrodinger equation with angular regularity
    Hirayama, Hiroyuki
    Kinoshita, Shinya
    Okamoto, Mamoru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 395 : 181 - 222
  • [32] Well-posedness of the cauchy problem for an inclusion
    I. V. Mel’nikova
    Differential Equations, 2004, 40 : 1512 - 1516
  • [33] Well-posedness of the Cauchy problem for an inclusion
    Mel'nikova, IV
    DIFFERENTIAL EQUATIONS, 2004, 40 (10) : 1512 - 1516
  • [34] Low regularity well-posedness for the viscous surface wave equation
    Xiaoxia Ren
    Zhaoyin Xiang
    Zhifei Zhang
    Science China Mathematics, 2019, 62 : 1887 - 1924
  • [35] Low regularity well-posedness for the viscous surface wave equation
    Xiaoxia Ren
    Zhaoyin Xiang
    Zhifei Zhang
    ScienceChina(Mathematics), 2019, 62 (10) : 1887 - 1924
  • [36] Low regularity well-posedness for the viscous surface wave equation
    Ren, Xiaoxia
    Xiang, Zhaoyin
    Zhang, Zhifei
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (10) : 1887 - 1924
  • [37] GLOBAL WELL-POSEDNESS OF A CAUCHY PROBLEM FOR A NONLINEAR PARABOLIC EQUATION WITH MEMORY
    Nguyen, Anh Tuan
    Nghia, Bui Dai
    Nguyen, Van Thinh
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [38] WELL-POSEDNESS OF CAUCHY PROBLEM FOR LANDAU EQUATION IN CRITICAL BESOV SPACE
    Cao, Hongmei
    Li, Hao-Guang
    Xu, Chao-Jiang
    Xu, Jiang
    KINETIC AND RELATED MODELS, 2019, 12 (04) : 829 - 884
  • [39] Well-posedness for the Cauchy Problem of the Modified Zakharov-Kuznetsov Equation
    Kinoshita, Shinya
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2022, 65 (02): : 139 - 158
  • [40] Well-posedness of the Cauchy problem for the Hirota equation in Sobolev spaces Hs
    Huo, ZH
    Guo, BL
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (06) : 1093 - 1110