Well-posedness of the Cauchy problem for Ostrovsky, Stepanyams and Tsimring equation with low regularity data

被引:8
|
作者
Zhao, Xiangqing [1 ]
Cui, Shangbin [2 ]
机构
[1] Zhejiang Ocean Univ, Dept Math, Zhoushan 316000, Zhejiang, Peoples R China
[2] Sun Yat Sen Univ, Inst Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
OST equation; initial value problem; local well-posedness; global well-posedness;
D O I
10.1016/j.jmaa.2008.03.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
this paper we prove that the initial value problem of the OST equation u(t) + u(xxx) + eta(Hu(x) + Hu(xxx)) + uu(x) = 0 (x is an element of R, t >= 0), where eta > 0 and H denotes the usual Hilbert transformation, is locally well-posed in the Sobolev space H-s(R) when s > -3/4, and globally well-posed in H-s(R) when s >= 0. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:778 / 787
页数:10
相关论文
共 50 条