Well-posedness of the Cauchy problem for Ostrovsky, Stepanyams and Tsimring equation with low regularity data

被引:8
作者
Zhao, Xiangqing [1 ]
Cui, Shangbin [2 ]
机构
[1] Zhejiang Ocean Univ, Dept Math, Zhoushan 316000, Zhejiang, Peoples R China
[2] Sun Yat Sen Univ, Inst Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
OST equation; initial value problem; local well-posedness; global well-posedness;
D O I
10.1016/j.jmaa.2008.03.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
this paper we prove that the initial value problem of the OST equation u(t) + u(xxx) + eta(Hu(x) + Hu(xxx)) + uu(x) = 0 (x is an element of R, t >= 0), where eta > 0 and H denotes the usual Hilbert transformation, is locally well-posed in the Sobolev space H-s(R) when s > -3/4, and globally well-posed in H-s(R) when s >= 0. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:778 / 787
页数:10
相关论文
共 9 条
[1]  
Alvarez B., 2003, DIFFERENTIAL INTEGRA, V16, P1249
[2]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[3]   On the well-posedness for the generalized Ostrovsky, Stepanyarns and Tsimring equation [J].
Carvajal, X ;
Scialom, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (07) :1277-1287
[4]  
IORIO RJ, 2001, CAMBRIDGE STUD ADV M, V70
[5]   THE CAUCHY-PROBLEM FOR THE KORTEWEG-DEVRIES EQUATION IN SOBOLEV SPACES OF NEGATIVE INDEXES [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) :1-21
[6]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603
[7]  
Molinet L, 2002, INT MATH RES NOTICES, V2002, P1979
[8]   RADIATION INSTABILITY IN A STRATIFIED SHEAR-FLOW [J].
OSTROVSKY, LA ;
STEPANYANTS, YA ;
TSIMRING, LS .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1984, 19 (02) :151-161
[9]  
PILOD D, 2006, THESIS I MATEMATICA