Vertex Colorings of Graphs Without Short Odd Cycles

被引:2
作者
Dudek, Andrzej [1 ]
Ramadurai, Reshma [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
Ramsey-type problems; vertex colorings; CHROMATIC NUMBER;
D O I
10.1002/jgt.20557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the work of Nesetril and Rodl on "Partitions of vertices" we are interested in obtaining some quantitative extensions of their result. In particular, given a natural number r and a graph G of order m with odd girth g, we show the existence of a graph H with odd girth at least g and order that is polynomial in m such that every r-coloring of the vertices of H yields a monochromatic and induced copy of G. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 68: 255-264, 2011
引用
收藏
页码:255 / 264
页数:10
相关论文
共 9 条
[1]   An almost quadratic bound on vertex Folkman numbers [J].
Dudek, Andrzej ;
Rodl, Vojtech .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (02) :132-140
[2]   GRAPH THEORY AND PROBABILITY .2. [J].
ERDOES, P .
CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (02) :346-&
[3]   ON CHROMATIC NUMBER OF GRAPHS AND SET-SYSTEMS [J].
ERDOS, P ;
HAJNAL, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (1-2) :61-&
[4]  
JANSON S, 2000, WIL INT S D, pR5, DOI 10.1002/9781118032718
[5]   ON CHROMATIC NUMBER OF FINITE SET-SYSTEMS [J].
LOVASZ, L .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1968, 19 (1-2) :59-&
[6]  
Negetril J., 1976, Comment. Math. Univ. Carol., V17, P85
[7]  
Sauer N., 1970, J COMB THEORY, V9, P144, DOI 10.1016/S0021-9800(70)80021-7
[8]  
THAS JA, 1995, HDB INCIDENCE GEOMET, P383
[9]  
[No title captured]