Implementing the Quantum von Neumann Architecture with Superconducting Circuits

被引:251
作者
Mariantoni, Matteo [1 ,4 ]
Wang, H. [1 ]
Yamamoto, T. [1 ,2 ]
Neeley, M. [1 ]
Bialczak, Radoslaw C. [1 ]
Chen, Y. [1 ]
Lenander, M. [1 ]
Lucero, Erik [1 ]
O'Connell, A. D. [1 ]
Sank, D. [1 ]
Weides, M. [1 ]
Wenner, J. [1 ]
Yin, Y. [1 ]
Zhao, J. [1 ]
Korotkov, A. N. [3 ]
Cleland, A. N. [1 ,4 ]
Martinis, John M. [1 ,4 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] NEC Corp Ltd, Green Innovat Res Labs, Tsukuba, Ibaraki 3058501, Japan
[3] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[4] Univ Calif Santa Barbara, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA
关键词
FOURIER-TRANSFORM; ENTANGLED STATES; COMPUTATION; GATES; BITS;
D O I
10.1126/science.1208517
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The von Neumann architecture for a classical computer comprises a central processing unit and a memory holding instructions and data. We demonstrate a quantum central processing unit that exchanges data with a quantum random-access memory integrated on a chip, with instructions stored on a classical computer. We test our quantum machine by executing codes that involve seven quantum elements: Two superconducting qubits coupled through a quantum bus, two quantum memories, and two zeroing registers. Two vital algorithms for quantum computing are demonstrated, the quantum Fourier transform, with 66% process fidelity, and the three-qubit Toffoli-class OR phase gate, with 98% phase fidelity. Our results, in combination especially with longer qubit coherence, illustrate a potentially viable approach to factoring numbers and implementing simple quantum error correction codes.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 28 条
[1]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[2]   Entangled states of trapped atomic ions [J].
Blatt, Rainer ;
Wineland, David .
NATURE, 2008, 453 (7198) :1008-1015
[3]   Implementation of the semiclassical quantum Fourier transform in a scalable system [J].
Chiaverini, J ;
Britton, J ;
Leibfried, D ;
Knill, E ;
Barrett, MD ;
Blakestad, RB ;
Itano, WP ;
Jost, JD ;
Langer, C ;
Ozeri, R ;
Schaetz, T ;
Wineland, DJ .
SCIENCE, 2005, 308 (5724) :997-1000
[4]   Mapping photonic entanglement into and out of a quantum memory [J].
Choi, K. S. ;
Deng, H. ;
Laurat, J. ;
Kimble, H. J. .
NATURE, 2008, 452 (7183) :67-U4
[5]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[6]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[7]   Experimental quantum error correction [J].
Cory, DG ;
Price, MD ;
Maas, W ;
Knill, E ;
Laflamme, R ;
Zurek, WH ;
Havel, TF ;
Somaroo, SS .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2152-2155
[8]   Preparation and measurement of three-qubit entanglement in a superconducting circuit [J].
DiCarlo, L. ;
Reed, M. D. ;
Sun, L. ;
Johnson, B. R. ;
Chow, J. M. ;
Gambetta, J. M. ;
Frunzio, L. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE, 2010, 467 (7315) :574-578
[9]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[10]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO