On the Solvability of the Burgers Equation with Dynamic Boundary Conditions in a Degenerating Domain

被引:8
作者
Jenaliyev, M. T. [1 ]
Assetov, A. A. [2 ]
Yergaliyev, M. G. [3 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] YeA Buketov Karaganda Univ, Karaganda, Kazakhstan
[3] Al Farabi Kazakh Natl Univ, Dept Mech & Math, Alma Ata, Kazakhstan
关键词
Burgers equation; degenerating domain; dynamic boundary condition; a priori estimate;
D O I
10.1134/S199508022203012X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the well-posedness of the boundary value problem for the Burgers equation with dynamic boundary conditions is studied in Sobolev spaces with a degenerating domain.
引用
收藏
页码:3661 / 3674
页数:14
相关论文
共 21 条
[1]  
Adams RA., 2003, Sobolev Space, V2
[2]   On one homogeneous problem for the heat equation in an infinite angular domain [J].
Amangalieva, M. M. ;
Dzhenaliev, M. T. ;
Kosmakova, M. T. ;
Ramazanov, M. I. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) :982-995
[3]   On a boundary value problem for the heat equation and a singular integral equation associated with it [J].
Amangaliyeva, Meiramkul ;
Jenaliyev, Muvasharkhan ;
Iskakov, Sagyndyk ;
Ramazanov, Murat .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 399
[4]  
[Anonymous], 1968, TRAVAUX RECHERCHES M
[5]  
Benia Y, 2018, ELECTRON J DIFFER EQ
[6]  
Benia Y, 2016, ELECTRON J DIFFER EQ
[7]  
Burgers J.M., 1974, The Nonlinear Diffusion Equation, DOI DOI 10.1007/978-94-010-1745-9
[8]  
Gantmacher F.R., 1950, Oscillation Matrices, Oscillation Kernels, and Small Vibrations of Mechanical Systems, V2nd, DOI [10.1090/chel/345, DOI 10.1090/CHEL/345]
[9]  
IVishik M., 1988, MATH PROBLEMS STAT H, V9
[10]   About Dirichlet boundary value problem for the heat equation in the infinite angular domain [J].
Jenaliyev, Muvasharkhan He ;
Amangaliyeva, Meiramkul ;
Kosmakova, Minzilya ;
Ramazanov, Murat .
BOUNDARY VALUE PROBLEMS, 2014, :1-21