A Chaos-based Multiplicative Perturbation Scheme for Privacy Preserving Data Mining

被引:0
作者
Luo, Zhifeng [1 ]
Wen, Congmin [1 ]
机构
[1] S China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Guangdong, Peoples R China
来源
2014 5TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS) | 2014年
关键词
privacy preserving data mining; multiplicative perturbation; logistic map; K-ANONYMITY;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The multiplicative perturbation is a popular scheme for privacy preserving data mining. It transforms the original data with the projection matrix. The security of projection matrix is a main concern in the multiplicative perturbation scheme. In this paper, we propose a novel multiplicative perturbation scheme which has a large key space. And we utilize the special property of chaotic systems, i.e., sensitivity to the initial condition and parameter, to design a new projection matrix generation algorithm. The experiment results show that the proposed scheme can preserve the privacy and maintain the utility for data miming.
引用
收藏
页码:941 / 944
页数:4
相关论文
共 11 条
[1]  
Agrawal R, 2000, SIGMOD REC, V29, P439, DOI 10.1145/335191.335438
[2]   Generation of quasi-normal variables using chaotic maps [J].
Flores, BC ;
Verdin, B ;
Thomas, G ;
Ashtari, A .
Radar Sensor Technology 1X, 2005, 5788 :108-115
[3]   Privacy-preserving data publishing for cluster analysis [J].
Fung, Benjamin C. M. ;
Wang, Ke ;
Wang, Lingyu ;
Hung, Patrick C. K. .
DATA & KNOWLEDGE ENGINEERING, 2009, 68 (06) :552-575
[4]  
Kargupta H, 2003, THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P99
[5]  
Lindenstrauss W. J. J., 1984, Contemp. Math, V26, P189
[6]   Random projection-based multiplicative data perturbation for privacy preserving distributed data mining [J].
Liu, K ;
Kargupta, H ;
Ryan, J .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (01) :92-106
[7]  
Pinkas Pinkas B. B., KDD Explorations, V4 4, P12, DOI DOI 10.1145/772862.772865
[8]  
Sang YP, 2009, LECT NOTES ARTIF INT, V5782, P334, DOI 10.1007/978-3-642-04174-7_22
[9]   k-anonymity:: A model for protecting privacy [J].
Sweeney, L .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2002, 10 (05) :557-570
[10]  
Vlad A, 2009, LECT NOTES COMPUT SC, V5593, P703, DOI 10.1007/978-3-642-02457-3_59