Tiling with arbitrary tiles

被引:10
作者
Gruslys, Vytautas [1 ]
Leader, Imre [1 ]
Tan, Ta Sheng [2 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
关键词
POLYOMINOES;
D O I
10.1112/plms/pdw017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a tile in Z(n), meaning a finite subset of Z(n). It may or may not tile Z(n), in the sense of Z(n) having a partition into copies of T. However, we prove that T does tile Z(d) for some d. This resolves a conjecture of Chalcraft.
引用
收藏
页码:1019 / 1039
页数:21
相关论文
共 10 条
[1]  
BERGER R, 1966, MEM AM MATH SOC, P1
[2]   TILING WITH POLYOMINOES AND COMBINATORIAL GROUP-THEORY [J].
CONWAY, JH ;
LAGARIAS, JC .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :183-208
[3]   POLYOMINOES WHICH TILE RECTANGLES [J].
GOLOMB, SW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 51 (01) :117-124
[4]  
Golomb SW., 1970, J COMB THEORY, V9, P60, DOI [DOI 10.1016/S0021-9800(70)80055-2, 10.1016/S0021-9800, DOI 10.1016/S0021-9800]
[5]  
GOLOMB SW, 1966, J COMB THEORY, V1, P280
[6]  
Grunbaum B., 2013, TILINGS PATTERNS DOV
[7]  
Klarner David A., 1969, J COMBINATORIAL THEO, V7, P107
[8]  
MathOverflow, 2015, DOES EV POL TIL SOM
[9]  
The Math Forum, 2 TIL PROBL
[10]   ARBITRARY VERSUS PERIODIC STORAGE SCHEMES AND TESSELLATIONS OF THE PLANE USING ONE TYPE OF POLYOMINO [J].
WIJSHOFF, HAG ;
VANLEEUWEN, J .
INFORMATION AND CONTROL, 1984, 62 (01) :1-25