Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime

被引:89
作者
Kalmykov, S. Y. [1 ]
Beck, A. [3 ]
Yi, S. A. [2 ]
Khudik, V. N. [2 ]
Downer, M. C. [2 ]
Lefebvre, E. [3 ]
Shadwick, B. A. [1 ]
Umstadter, D. P. [1 ]
机构
[1] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] DIF, DAM, CEA, F-91297 Arpajon, France
基金
美国国家科学基金会;
关键词
WAKE-FIELD ACCELERATION; INTENSE; BEAMS; SIMULATION; PULSES; ULTRAINTENSE;
D O I
10.1063/1.3566062
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An electron density bubble driven in a rarefied uniform plasma by a slowly evolving laser pulse goes through periods of adiabatically slow expansions and contractions. Bubble expansion causes robust self-injection of initially quiescent plasma electrons, whereas stabilization and contraction terminate self-injection thus limiting injected charge; concomitant phase space rotation reduces the bunch energy spread. In regimes relevant to experiments with hundred terawatt- to petawatt-class lasers, bubble dynamics and, hence, the self-injection process are governed primarily by the driver evolution. Collective transverse fields of the trapped electron bunch reduce the accelerating gradient and slow down phase space rotation. Bubble expansion followed by stabilization and contraction suppresses the low-energy background and creates a collimated quasi-monoenergetic electron bunch long before dephasing. Nonlinear evolution of the laser pulse (spot size oscillations, self-compression, and front steepening) can also cause continuous self-injection, resulting in a large dark current, degrading the electron beam quality. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3566062]
引用
收藏
页数:9
相关论文
共 46 条
[1]   Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection [J].
Clayton, C. E. ;
Ralph, J. E. ;
Albert, F. ;
Fonseca, R. A. ;
Glenzer, S. H. ;
Joshi, C. ;
Lu, W. ;
Marsh, K. A. ;
Martins, S. F. ;
Mori, W. B. ;
Pak, A. ;
Tsung, F. S. ;
Pollock, B. B. ;
Ross, J. S. ;
Silva, L. O. ;
Froula, D. H. .
PHYSICAL REVIEW LETTERS, 2010, 105 (10)
[2]   Evolution of ultra-intense, short-pulse lasers in underdense plasmas [J].
Decker, CD ;
Mori, WB ;
Tzeng, KC ;
Katsouleas, T .
PHYSICS OF PLASMAS, 1996, 3 (05) :2047-2056
[3]   Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators [J].
Dong, Peng ;
Reed, S. A. ;
Yi, S. A. ;
Kalmykov, S. ;
Shvets, G. ;
Downer, M. C. ;
Matlis, N. H. ;
Leemans, W. P. ;
McGuffey, C. ;
Bulanov, S. S. ;
Chvykov, V. ;
Kalintchenko, G. ;
Krushelnick, K. ;
Maksimchuk, A. ;
Matsuoka, T. ;
Thomas, A. G. R. ;
Yanovsky, V. .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]   Observation of laser-pulse shortening in nonlinear plasma waves [J].
Faure, J ;
Glinec, Y ;
Santos, JJ ;
Ewald, F ;
Rousseau, JP ;
Kiselev, S ;
Pukhov, A ;
Hosokai, T ;
Malka, V .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[5]   A laser-plasma accelerator producing monoenergetic electron beams [J].
Faure, J ;
Glinec, Y ;
Pukhov, A ;
Kiselev, S ;
Gordienko, S ;
Lefebvre, E ;
Rousseau, JP ;
Burgy, F ;
Malka, V .
NATURE, 2004, 431 (7008) :541-544
[6]   Measurements of the Critical Power for Self-Injection of Electrons in a Laser Wakefield Accelerator [J].
Froula, D. H. ;
Clayton, C. E. ;
Doeppner, T. ;
Marsh, K. A. ;
Barty, C. P. J. ;
Divol, L. ;
Fonseca, R. A. ;
Glenzer, S. H. ;
Joshi, C. ;
Lu, W. ;
Martins, S. F. ;
Michel, P. ;
Mori, W. B. ;
Palastro, J. P. ;
Pollock, B. B. ;
Pak, A. ;
Ralph, J. E. ;
Ross, J. S. ;
Siders, C. W. ;
Silva, L. O. ;
Wang, T. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[7]   High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding [J].
Geddes, CGR ;
Toth, C ;
van Tilborg, J ;
Esarey, E ;
Schroeder, CB ;
Bruhwiler, D ;
Nieter, C ;
Cary, J ;
Leemans, WP .
NATURE, 2004, 431 (7008) :538-541
[8]   Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons [J].
Gordienko, S ;
Pukhov, A .
PHYSICS OF PLASMAS, 2005, 12 (04) :1-11
[9]   Design considerations for table-top, laser-based VUV and X-ray free electron lasers [J].
Gruener, F. ;
Becker, S. ;
Schramm, U. ;
Fuchs, M. ;
Weingartner, R. ;
Habs, D. ;
Meyer-Ter-Vehn, J. ;
Geissler, M. ;
Ferrario, M. ;
Serafini, L. ;
Van Der Geer, B. ;
Backe, H. ;
Lauth, W. ;
Reiche, S. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 86 (03) :431-435
[10]  
HAFZ NAM, NUCL INST A IN PRESS, P84024