Periodic boundary value problems for impulsive functional differential equations in Banach spaces

被引:0
作者
Lu, HQ [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
关键词
impulsive functional differential equations; cone; monotone iterative technique;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the monotone iterative technique and a comparison result to prove some existence theorems of minimal and maximal solutions of periodic boundary value problems for nonlinear first order impulsive functional differential equations in Banach spaces. Then, we give some applications to boundary value problems for second order functional differential equations in Banach spaces.
引用
收藏
页码:677 / 693
页数:17
相关论文
共 10 条
[1]   ON MONOTONE ITERATIVE METHOD FOR PERIODIC BOUNDARY-VALUE-PROBLEMS OF NONLINEAR INTEGRODIFFERENTIAL EQUATIONS [J].
CHEN, YB ;
ZHUANG, W .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (03) :295-303
[2]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[3]  
GUO DJ, 1988, NONLINEAR PROBLEMS
[4]   PERIODIC BOUNDARY-VALUE-PROBLEMS AND MONOTONE ITERATIVE METHODS FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
HADDOCK, JR ;
NKASHAMA, MN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (03) :267-276
[5]  
HALE JK, 1977, THEORY FUNCTIONAL DI
[6]   Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations [J].
Hristova, SG ;
Bainov, DD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (01) :1-13
[7]  
LIU LS, 1996, FAR E J MATH SCI, V43, P59
[8]  
Liu XZ, 1998, CHINESE ANN MATH B, V19, P517
[9]  
LIU XZ, 1995, NONLINEAR TIMES DIGE, V2, P69
[10]  
ZHENG ZX, 1994, THEORY FUNCTIONAL DI