A 1.4-m Ω-Sensitivity 94-dB Dynamic-Range Electrical Impedance Tomography SoC and 48-Channel Hub-SoC for 3-D Lung Ventilation Monitoring System

被引:43
作者
Kim, Minseo [1 ]
Jang, Jaeeun [1 ]
Kim, Hyunki [1 ]
Lee, Jihee [1 ]
Lee, Jaehyuck [1 ]
Lee, Jiwon [1 ]
Lee, Kyoung-Rog [1 ]
Kim, Kwantae [1 ]
Lee, Yongsu [1 ]
Lee, Kyuho Jason [1 ]
Yoo, Hoi-Jun [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon 305701, South Korea
关键词
3-D-imaging; active electrode (AE); electrical impedance tomography (EIT); impedance spectroscopy; lung ventilation monitoring; real-time imaging; wide dynamic range; INJURY; DESIGN; RECONSTRUCTION; GREIT;
D O I
10.1109/JSSC.2017.2753234
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A wearable electrical impedance tomography (EIT) system is proposed for the portable real-time 3-D lung ventilation monitoring. It consists of two types of SoCs, active electrode (AE)-SoC and Hub-SoC, mounted on wearable belts. The 48-channel AE-SoCs are integrated on flexible printed circuit board belt, and Hub-SoC is integrated in the hub module which performs data gathering and wireless communication between an external imaging device. To get high accuracy under the variation of conductivity, the dual-mode current stimulator provides the optimal frequency for time difference-EIT and frequency difference-EIT with simultaneous 4 k-128 kHz impedance sensing. A wide dynamic range instruments amplifier is proposed to provide 94 dB of wide dynamic range impedance sensing. In addition, the 48-channel AE system with the dedicated communication and calibration is implemented to achieve 1.4-m Omega sensitivity of impedance difference in the in vivo environment. The AE-/Hub-SoCs occupy 3.2 and 1.3 mm2in 65-nm CMOS technology and consume 124 mu W and 1.1 mW with 1.2 V supply, respectively. As a result, EIT images are reconstructed with 90% of accuracy, and up to 10 frames/s real-time 3-D lung images are successfully displayed.
引用
收藏
页码:2829 / 2842
页数:14
相关论文
共 26 条
  • [1] GREIT: a unified approach to 2D linear EIT reconstruction of lung images
    Adler, Andy
    Arnold, John H.
    Bayford, Richard
    Borsic, Andrea
    Brown, Brian
    Dixon, Paul
    Faes, Theo J. C.
    Frerichs, Inez
    Gagnon, Herve
    Gaerber, Yvo
    Grychtol, Bartlomiej
    Hahn, Guenter
    Lionheart, William R. B.
    Malik, Anjum
    Patterson, Robert P.
    Stocks, Janet
    Tizzard, Andrew
    Weiler, Norbert
    Wolf, Gerhard K.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) : S35 - S55
  • [2] Lung monitoring at the bedside in mechanically ventilated patients
    Blankman, Paul
    Gommers, Diederik
    [J]. CURRENT OPINION IN CRITICAL CARE, 2012, 18 (03) : 261 - 266
  • [3] The flipped voltage follower:: A useful cell for low-voltage low-power circuit design
    Carvajal, RG
    Ramírez-Angulo, J
    López-Martín, A
    Torralba, A
    Galán, JAG
    Carlosena, A
    Chavero, FM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (07) : 1276 - 1291
  • [4] IDENTIFICATION OF PATIENTS WITH ACUTE LUNG INJURY - PREDICTORS OF MORTALITY
    DOYLE, RL
    SZAFLARSKI, N
    MODIN, GW
    WIENERKRONISH, JP
    MATTHAY, MA
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1995, 152 (06) : 1818 - 1824
  • [5] Electrical conductivity of tissue at frequencies below 1 MHz
    Gabriel, C.
    Peyman, A.
    Grant, E. H.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (16) : 4863 - 4878
  • [6] Electrical impedance tomography system based on active electrodes
    Gaggero, Pascal Olivier
    Adler, Andy
    Brunner, Josef
    Seitz, Peter
    [J]. PHYSIOLOGICAL MEASUREMENT, 2012, 33 (05) : 831 - 847
  • [7] A Unified Approach for EIT Imaging of Regional Overdistension and Atelectasis in Acute Lung Injury
    Gomez-Laberge, Camille
    Arnold, John H.
    Wolf, Gerhard K.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (03) : 834 - 842
  • [8] 3D EIT image reconstruction with GREIT
    Grychtol, Bartlomiej
    Mueller, Beat
    Adler, Andy
    [J]. PHYSIOLOGICAL MEASUREMENT, 2016, 37 (06) : 785 - 800
  • [9] Design and implementation of a high frequency electrical impedance tomography system
    Halter, R
    Hartov, A
    Paulsen, KD
    [J]. PHYSIOLOGICAL MEASUREMENT, 2004, 25 (01) : 379 - 390
  • [10] Holder D. S., 2004, Electrical Impedance Tomography: Methods, History and Applications (Series in Medical Physics and Biomedical Engineering)