Ground and bound states for non-linear Schrodinger systems with indefinite linear terms

被引:2
作者
Qin, Dongdong [1 ]
He, Yubo [1 ,2 ]
Tang, Xianhua [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Huaihua Univ, Dept Math & Appl Math, Huaihua, Peoples R China
关键词
Schrodinger system; ground state; indefinite linear part; asymptotically periodic; asymptotically linear; ELLIPTIC-SYSTEMS; EQUATIONS; EXISTENCE; PROPAGATION; THEOREMS; WAVES;
D O I
10.1080/17476933.2017.1281256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Employing some new analytical skills and the non-Nehari manifold method, we prove some results about the existence of ground and bound states of the following non-linear Schrodinger system: {-Delta u + U-1(x)u = f (x, u, v) in R-N, -Delta v + U-2(x)v = g(x, u, v) in R-N, u, v is an element of H-1(R-N).
引用
收藏
页码:1758 / 1781
页数:24
相关论文
共 47 条
[1]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[2]  
[Anonymous], 1993, Revista Matemtica Universidad Complutense de Madrid
[3]  
[Anonymous], 1997, Minimax theorems
[4]  
[Anonymous], 1974, Sov. Phys. JETP
[5]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[6]   MINIMUM ACTION SOLUTIONS OF SOME VECTOR FIELD-EQUATIONS [J].
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (01) :97-113
[7]   Infinitely many solutions for resonant cooperative elliptic systems with sublinear or superlinear terms [J].
Chen, Guanwei ;
Ma, Shiwang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :271-286
[8]   Asymptotically or super linear cooperative elliptic systems in the whole space [J].
Chen GuanWei ;
Ma ShiWang .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (06) :1181-1194
[9]   Standing waves for linearly coupled Schrodinger equations with critical exponent [J].
Chen, Zhijie ;
Zou, Wenming .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :429-447
[10]   Monotonicity and nonexistence results to cooperative systems in the half space [J].
Chen, Zhijie ;
Lin, Chang-Shou ;
Zou, Wenming .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (02) :1088-1105