Generating non-uniformly correlated twisted sources

被引:20
|
作者
Zhu, Shijun [1 ,2 ,3 ]
Li, Peng [1 ]
Li, Zhenhua [1 ,2 ]
Cai, Yangjian [4 ]
He, Weiji [5 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Informat Phys & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, MIIT Key Lab Semicond Microstruct & Quantum Sensi, Nanjing 210094, Peoples R China
[3] Soochow Univ, Sch Optoelect Sci & Engn, Suzhou 215006, Peoples R China
[4] Shandong Normal Univ, Coll Phys & Elect, Ctr Light Manipulat & Applicat, Jinan 250014, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
CROSS-SPECTRAL DENSITIES; SCHELL; BEAMS;
D O I
10.1364/OL.442264
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The inverse method of proving the twistability of cross-spectral density (CSD) inevitably falls into spontaneous difficulties. Based on a nonnegative self-consistent design guideline for generating genuine CSDs introduced by Gori and Santarsiero, we demonstrate a feasible way for twisting partially coherent sources by sticking a Schell-model function to CSDs, which also determines the upper bound of the twisting strength. Analysis shows that the degree of coherence of a new class of twisted pseudo-Gaussian Schell-model beam is neither shift invariant nor shift-circular symmetric. In the presence of a vortex phase, the two different types of chiral phases affect each other and together control the propagation behavior. We further carry out an experiment to generate this non-uniformly correlated twisted beam using weighted superposition of mutually uncorrelated pseudo modes. The result is beneficial for devising nontrivial twisted beams and offers new opportunities. (C) 2021 Optical Society of America
引用
收藏
页码:5100 / 5103
页数:4
相关论文
共 50 条
  • [41] Generating a hollow twisted correlated beam using correlated perturbations
    Fu, Gang-Kun
    Chen, Jun
    Qi, Guo-Zhen
    Wu, Yang
    Zhang, Xiong
    Wang, Hai-Long
    Shi, Yan
    Zhao, Chun-Liu
    Jin, Shang-Zhong
    OPTICS EXPRESS, 2023, 31 (02) : 1442 - 1451
  • [42] On the motion of particles in non-uniformly vibrating liquid
    Lavrenteva, OM
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 : 251 - 263
  • [43] Manifold Constrained Non-uniformly Elliptic Problems
    Cristiana De Filippis
    Giuseppe Mingione
    The Journal of Geometric Analysis, 2020, 30 : 1661 - 1723
  • [44] Non-uniformly moving source in electromagnetic waveguides
    Rabinovich, VS
    Sanches, IM
    INTERNATIONAL SEMINAR DAY ON DIFFRACTION' 2003, PROCEEDINGS, 2003, : 193 - 202
  • [45] Mixing for Some Non-Uniformly Hyperbolic Systems
    Liverani, Carlangelo
    Terhesiu, Dalia
    ANNALES HENRI POINCARE, 2016, 17 (01): : 179 - 226
  • [46] On non-uniformly parabolic functional differential equations
    Simon, Laszlo
    Jaeger, Willi
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2008, 45 (02) : 285 - 300
  • [47] Building Thermodynamics for Non-uniformly Hyperbolic Maps
    Climenhaga V.
    Pesin Y.
    Arnold Mathematical Journal, 2017, 3 (1) : 37 - 82
  • [48] Non-uniformly hyperbolic horseshoes in the standard family
    Matheus, Carlos
    Moreira, Carlos Gustavo
    Palis, Jacob
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 146 - 149
  • [49] Fractional rate non-uniformly spaced equalization
    Meng, Chen
    Tuqan, Jamal
    GLOBECOM 2007: 2007 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-11, 2007, : 3091 - 3095
  • [50] Multifractal analysis of non-uniformly hyperbolic systems
    Anders Johansson
    Thomas M. Jordan
    Anders Öberg
    Mark Pollicott
    Israel Journal of Mathematics, 2010, 177 : 125 - 144