Curated Data In - Trustworthy In Silico Models Out: The Impact of Data Quality on the Reliability of Artificial Intelligence Models as Alternatives to Animal Testing

被引:33
作者
Alves, Vinicius M. [1 ]
Auerbach, Scott S. [2 ]
Kleinstreuer, Nicole [3 ]
Rooney, John P. [4 ]
Muratov, Eugene N. [5 ,6 ]
Rusyn, Ivan [7 ]
Tropsha, Alexander [5 ]
Schmitt, Charles [1 ]
机构
[1] NIEHS, Off Data Sci, Div Natl Toxicol Program DNTP, Durham, NC 27560 USA
[2] NIEHS, Toxinformat Grp, Predict Toxicol Branch, DNTP, Durham, NC 27560 USA
[3] NIEHS, Natl Toxicol Program Interagcy Ctr Evaluat Altern, Sci Directors Off, DNTP, Durham, NC 27560 USA
[4] Integrated Lab Syst LLC, Morrisville, NC USA
[5] Univ N Carolina, UNC Eshelman Sch Pharm, Lab Mol Modeling, Chapel Hill, NC 27599 USA
[6] Univ Fed Paraiba, Dept Pharmaceut Sci, Joao Pessoa, Paraiba, Brazil
[7] Texas A&M Univ, Coll Vet Med & Biomed Sci, Dept Vet Integrat Biosci, College Stn, TX USA
来源
ATLA-ALTERNATIVES TO LABORATORY ANIMALS | 2021年 / 49卷 / 03期
关键词
artificial intelligence; data curation; data quality; data reproducibility; QSAR; QSAR; PREDICTION; REPRODUCIBILITY; TOXICOLOGY; TOXICITY; STRATEGY; VERIFY; BEWARE; CHEMBL; TRUST;
D O I
10.1177/02611929211029635
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
New Approach Methodologies (NAMs) that employ artificial intelligence (AI) for predicting adverse effects of chemicals have generated optimistic expectations as alternatives to animal testing. However, the major underappreciated challenge in developing robust and predictive AI models is the impact of the quality of the input data on the model accuracy. Indeed, poor data reproducibility and quality have been frequently cited as factors contributing to the crisis in biomedical research, as well as similar shortcomings in the fields of toxicology and chemistry. In this article, we review the most recent efforts to improve confidence in the robustness of toxicological data and investigate the impact that data curation has on the confidence in model predictions. We also present two case studies demonstrating the effect of data curation on the performance of AI models for predicting skin sensitisation and skin irritation. We show that, whereas models generated with uncurated data had a 7-24% higher correct classification rate (CCR), the perceived performance was, in fact, inflated owing to the high number of duplicates in the training set. We assert that data curation is a critical step in building computational models, to help ensure that reliable predictions of chemical toxicity are achieved through use of the models.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 84 条
[51]   Editorial: Method and Data Sharing and Reproducibility of Scientific Results [J].
Merz, Kenneth M., Jr. ;
Amaro, Rommie ;
Cournia, Zoe ;
Rarey, Matthias ;
Soares, Thereza ;
Tropsha, Alexander ;
Wahab, Habibah A. ;
Wang, Renxiao .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5868-5869
[52]  
Merz KM, 2015, J CHEM INF MODEL, V55, P719, DOI 10.1021/acs.jcim.5b00180
[53]   Improving Reproducibility in Toxicology [J].
Miller, Gary W. .
TOXICOLOGICAL SCIENCES, 2014, 139 (01) :1-3
[54]   QSAR without borders [J].
Muratov, Eugene N. ;
Bajorath, Jurgen ;
Sheridan, Robert P. ;
Tetko, Igor, V ;
Filimonov, Dmitry ;
Poroikov, Vladimir ;
Oprea, Tudor, I ;
Baskin, Igor I. ;
Varnek, Alexandre ;
Roitberg, Adrian ;
Isayev, Olexandr ;
Curtarolo, Stefano ;
Fourches, Denis ;
Cohen, Yoram ;
Aspuru-Guzik, Alan ;
Winkler, David A. ;
Agrafiotis, Dimitris ;
Cherkasov, Artem ;
Tropsha, Alexander .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (11) :3525-3564
[55]   Existing and Developing Approaches for QSAR Analysis of Mixtures [J].
Muratov, Eugene N. ;
Varlamova, Ekaterina V. ;
Artemenko, Anatoly G. ;
Polishchuk, Pavel G. ;
Kuz'min, Victor E. .
MOLECULAR INFORMATICS, 2012, 31 (3-4) :202-221
[56]   In silico toxicology protocols [J].
Myatt, Glenn J. ;
Ahlberg, Ernst ;
Akahori, Yumi ;
Allen, David ;
Amberg, Alexander ;
Anger, Lennart T. ;
Aptula, Aynur ;
Auerbach, Scott ;
Beilke, Lisa ;
Bellion, Phillip ;
Benigni, Romualdo ;
Bercu, Joel ;
Booth, Ewan D. ;
Bower, Dave ;
Brigo, Alessandro ;
Burden, Natalie ;
Cammerer, Zoryana ;
Cronin, Mark T. D. ;
Cross, Kevin P. ;
Custer, Laura ;
Dettwiler, Magdalena ;
Dobo, Krista ;
Ford, Kevin A. ;
Fortin, Marie C. ;
Gad-McDonald, Samantha E. ;
Gellatly, Nichola ;
Gervais, Veronique ;
Glover, Kyle P. ;
Glowienke, Susanne ;
Van Gompel, Jacky ;
Gutsell, Steve ;
Hardy, Barry ;
Harvey, James S. ;
Hillegass, Jedd ;
Honma, Masamitsu ;
Hsieh, Jui-Hua ;
Hsu, Chia-Wen ;
Hughes, Kathy ;
Johnson, Candice ;
Jolly, Robert ;
Jones, David ;
Kemper, Ray ;
Kenyon, Michelle O. ;
Kim, Marlene T. ;
Kruhlak, Naomi L. ;
Kulkarni, Sunil A. ;
Kuemmerer, Klaus ;
Leavitt, Penny ;
Majer, Bernhard ;
Masten, Scott .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2018, 96 :1-17
[57]  
National Institutes of Health (NIH), 2018, NIH STRAT PLAN DAT S
[58]   Automated Framework for Developing Predictive Machine Learning Models for Data-Driven Drug Discovery [J].
Neves, Bruno J. ;
Moreira-Filho, Jose T. ;
Silva, Arthur C. ;
Borba, Joyce V. V. B. ;
Mottin, Melina ;
Alves, Vinicius M. ;
Braga, Rodolpho C. ;
Muratov, Eugene N. ;
Andrade, Carolina H. .
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2021, 32 (01) :110-122
[59]   In Silico Repositioning-Chemogenomics Strategy Identifies New Drugs with Potential Activity against Multiple Life Stages of Schistosoma mansoni [J].
Neves, Bruno J. ;
Braga, Rodolpho C. ;
Bezerra, Jose C. B. ;
Cravo, Pedro V. L. ;
Andrade, Carolina H. .
PLOS NEGLECTED TROPICAL DISEASES, 2015, 9 (01)
[60]  
OECD, 2018, 441 OECD TG, P463