Anticanonical Divisors and Curve Classes on Fano Manifolds

被引:0
|
作者
Horing, Andreas [1 ,2 ]
Voisin, Claire [3 ]
机构
[1] Univ Paris 06, TGA Case 247,4 Pl Jussieu, F-75005 Paris, France
[2] Albert Ludwig Univ Freiburg, Freiburg, Germany
[3] Univ Pierre & Marie, Inst Math Jussieu, CNRS, F-75005 Paris, France
关键词
Canonical singularities; Fano varieties; curve classes; variation of Hodge structure;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the Hodge conjecture with rational coefficients holds for degree 2n - 2 classes on complex projective n-folds. In this paper we study the more precise question if on a rationally connected complex projective n-fold the integral Hodge classes of degree 2n - 2 are generated over Z by classes of curves. We combine techniques from the theory of singularities of pairs on the one hand and infinitesimal variation of Hodge structures on the other hand to give an affirmative answer to this question for a large class of manifolds including Fano fourfolds. In the last case, one step in the proof is the following result of independent interest: There exist anticanonical divisors with isolated canonical singularities on a smooth Fano fourfold.
引用
收藏
页码:1371 / 1393
页数:23
相关论文
共 19 条
  • [1] ON THE K-STABILITY OF FANO VARIETIES AND ANTICANONICAL DIVISORS
    Fujita, Kento
    Odaka, Yuji
    TOHOKU MATHEMATICAL JOURNAL, 2018, 70 (04) : 511 - 521
  • [2] Moduli of cubic surfaces and their anticanonical divisors
    Gallardo, Patricio
    Martinez-Garcia, Jesus
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (03): : 853 - 873
  • [3] Anticanonical system of Fano fivefolds
    Horing, Andreas
    Smiech, Robert
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (01) : 115 - 119
  • [4] Moduli of cubic surfaces and their anticanonical divisors
    Patricio Gallardo
    Jesus Martinez-Garcia
    Revista Matemática Complutense, 2019, 32 : 853 - 873
  • [5] Gorenstein Fano threefolds with base points in the anticanonical system
    Jahnke, P
    Radloff, N
    COMPOSITIO MATHEMATICA, 2006, 142 (02) : 422 - 432
  • [6] Toric Degenerations, Tropical Curve, and Gromov-Witten Invariants of Fano Manifolds
    Nishinou, Takeo
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (03): : 667 - 695
  • [7] Codimension one Fano distributions on Fano manifolds
    Araujo, Carolina
    Correa, Mauricio
    Massarenti, Alex
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
  • [8] Classification of arithmetically Gorenstein divisors on some Fano varieties
    Ciolli, Gianni
    Dolcetti, Alberto
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) : 611 - 617
  • [9] Classification of arithmetically Gorenstein divisors on some Fano varieties
    Gianni Ciolli
    Alberto Dolcetti
    Annali di Matematica Pura ed Applicata, 2009, 188 : 611 - 617
  • [10] Fundamental divisors on Fano varieties of index n − 3
    Enrica Floris
    Geometriae Dedicata, 2013, 162 : 1 - 7