Asymptotic Solution of the Cauchy Problem for a First-Order Differential Equation with a Small Parameter in a Banach Space

被引:0
作者
Uskov, V. I. [1 ]
机构
[1] Voronezh State Univ Forestry & Technol, Voronezh 394613, Russia
关键词
Cauchy problem; differential equation; first order; small parameter; Banach space; asymptotic solution; cascade decomposition; boundary layer phenomenon;
D O I
10.1134/S0001434621070154
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cauchy problem for a first-order differential equation with a small parameter multiplying the derivative in a Banach space is considered. The right-hand side of the equation contains the Fredholm operator perturbed by an additional operator term containing a small parameter. The asymptotic expansion of the solution in powers of the small parameter is constructed by the Vasil'yeva-Vishik-Lyusternik method. To calculate the components of the regular part of the expansion, the cascade decomposition method is used, which consists in the step-by-step splitting of the equation into equations in subspaces of decreasing dimensions. The conditions under which the boundary layer phenomenon occurs in the problem are determined.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 15 条
[1]  
Chernous'ko F.L., 1965, COMP MATH MATH PHYS+, V5, P99, DOI [10.1016/0041-5553(65)90101-1, DOI 10.1016/0041-5553(65)90101-1]
[2]  
Gribkovskaya I.V., 2011, THEORY ACTIVE SYSTEM, P93
[3]  
Krein S.G, 1969, PRIKL MAT MEKH, V33, P456
[4]  
Krein S. G., 1967, LINEAR DIFFERENTIAL
[5]  
Lomov S., 2011, FUNDAMENTALS MATH TH
[6]  
Nikolskii S. M., 1943, IZV AKAD NAUK SSSR M, V7, P147
[7]  
Raetskaya E.V., 2015, J MATH SCI N Y, V208, P131, DOI [10.1007/s10958-015-2430-5, DOI 10.1007/S10958-015-2430-5]
[8]  
Trenogin V.A., 1970, RUSSIAN MATH SURVEYS, V25, P119, DOI [10.1070/RM1970v025n04ABEH001262, DOI 10.1070/RM1970V025N04ABEH001262]
[9]  
[Усков Владимир Игоревич Uskov Vladimir I.], 2020, [Вестник российских университетов. Математика, Russian Universities Reports. Mathematics, Vestnik rossijskih universitetov. Matematika], V25, P48, DOI 10.20310/2686-9667-2020-25-129-48-56
[10]  
Vainberg M. M., 1969, THEORY BRANCHING SOL