Haloplumbate salts as reagents for the non-aqueous electrodeposition of lead

被引:3
|
作者
Bartlett, Philip N. [1 ]
Burt, Jennifer [1 ]
Hasan, Mahboba M. [1 ]
Hector, Andrew L. [1 ]
Levason, William [1 ]
Reid, Gillian [1 ]
Richardson, Peter W. [1 ]
机构
[1] Univ Southampton, Chem, Southampton SO17 1BJ, Hants, England
来源
RSC ADVANCES | 2016年 / 6卷 / 77期
基金
英国工程与自然科学研究理事会;
关键词
CRYSTAL-STRUCTURES; NANOWIRES; IODOPLUMBATE; METALS; ARRAYS;
D O I
10.1039/c6ra12942k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cyclic voltammetry experiments on the Pb(II) salts, [PPh4][PbX3] (X = Cl, Br, I) in CH2Cl2 solution ([PPh4]X supporting electrolyte) at a Pt disk electrode show reproducible nucleation and stripping features consistent with reduction to elemental Pb. The reduction potential shifts to less cathodic from Cl (-0.40 V) -> Br (-0.27 V) -> I (-0.19 V vs. Ag/AgCl), in line with the Pb-X bond strengths decreasing. Potentiostatic electrodeposition using [PPh4][PbCl3] in CH2Cl2 leads to growth of a thin film of crystalline Pb onto planar TiN electrodes, confirmed by SEM, EDX and XRD analysis. Electrodeposition under similar conditions onto a planar Au electrode leads to deposition of elemental Pb, accompanied by some alloying at the substrate/film interface, with XRD analysis confirming the formation of AuPb2 and AuPb3. Transferring the [PPh4][PbCl3] reagent into supercritical CH2F2 (17.5 MPa and 360 K) containing [PPh4]Cl led to very limited solubility of the Pb reagent; using [(NBu4)-Bu-n]Cl as a supporting electrolyte caused an increase in solubility, although still lower than in liquid CH2Cl2. Cyclic voltammetry experiments (Pt disk) using this electrolyte also show voltammetry consistent with Pb deposition, however the low solubility of the lead salt in scCH(2)F(2) meant that electrodeposition onto a planar TiN substrate was not possible.
引用
收藏
页码:73323 / 73330
页数:8
相关论文
共 50 条
  • [1] ELECTRODEPOSITION OF ALUMINUM IN NON-AQUEOUS SOLVENTS
    GARAI, T
    MATERIALS CHEMISTRY AND PHYSICS, 1983, 8 (05) : 399 - 434
  • [2] ELECTRODEPOSITION FROM NON-AQUEOUS ELECTROLYTES
    BROOMAN, EW
    PLATING AND SURFACE FINISHING, 1985, 72 (05): : 142 - 148
  • [3] Non-aqueous electrodeposition of p-block metals and metalloids from halometallate salts
    Bartlett, Philip N.
    Cook, David
    de Groot, C. H.
    Hector, Andrew L.
    Huang, Ruomeng
    Jolleys, Andrew
    Kissling, Gabriela P.
    Levason, William
    Pearce, Stuart J.
    Reid, Gillian
    RSC ADVANCES, 2013, 3 (36): : 15645 - 15654
  • [4] NON-AQUEOUS DETERMINATION OF INORGANIC SALTS
    CUNDIFF, RH
    MARKUNAS, PC
    ANALYTICA CHIMICA ACTA, 1959, 21 (01) : 68 - 73
  • [5] Electrodeposition of metals from non-aqueous solvents
    Audrieth, LF
    Nelson, HW
    CHEMICAL REVIEWS, 1931, 8 (02) : 335 - 352
  • [6] THE ELECTRODEPOSITION OF BERYLLIUM FROM NON-AQUEOUS SOLUTIONS
    MENZIES, IA
    HILL, DL
    OWEN, LW
    JOURNAL OF THE LESS-COMMON METALS, 1959, 1 (04): : 321 - 330
  • [7] Electrodeposition of indium from non-aqueous electrolytes
    Monnens, Wouter
    Deferm, Clio
    Sniekers, Jeroen
    Fransaer, Jan
    Binnemans, Koen
    CHEMICAL COMMUNICATIONS, 2019, 55 (33) : 4789 - 4792
  • [8] ELECTRODEPOSITION OF LITHIUM IN NON-AQUEOUS ORGANIC ELECTROLYTES
    GARREAU, M
    THEVENIN, J
    FEKIR, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (08) : C321 - C321
  • [9] Electrodeposition of CdS from non-aqueous bath
    Lade, SJ
    Lokhande, CD
    MATERIALS CHEMISTRY AND PHYSICS, 1997, 49 (02) : 160 - 163
  • [10] Non-aqueous Electrodeposition of ZnO and CdO films
    Jayakrishnan, R
    Hodes, G
    THIN SOLID FILMS, 2003, 440 (1-2) : 19 - 25