Fe-CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large-Current-Density Oxygen Evolution and Overall Water Splitting

被引:402
作者
Cao, Li-Ming [1 ]
Hu, Yu-Wen [1 ]
Tang, Shang-Feng [2 ]
Iljin, Andrey [3 ]
Wang, Jia-Wei [1 ]
Zhang, Zhi-Ming [2 ]
Lu, Tong-Bu [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
[2] Tianjin Univ Technol, Sch Mat Sci & Engn, Inst New Energy Mat & Low Carbon Technol, Tianjin 300384, Peoples R China
[3] Natl Acad Sci Ukraine, Inst Phys, Prospect Nauki 46, UA-03028 Kiev, Ukraine
关键词
bifunctional electrocatalysts; large current density; oxygen evolution; Prussian blue analogues; HIGHLY EFFICIENT; BIFUNCTIONAL ELECTROCATALYST; NANOSHEET ARRAYS; HIGH-PERFORMANCE; GRAPHENE OXIDE; NICKEL FOAM; CATALYST; HYDROXIDE; OXIDATION; NANOTUBES;
D O I
10.1002/advs.201800949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non-noble metal catalyst by directly growing a Co-Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe-doped CoP (Fe-CoP) electrocatalyst. The Fe-CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low over-potentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm(-2) current densities in 1.0 m KOH solution. In addition, the Fe-CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm(-2) current density in alkaline solution. Thus, the Fe-CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm(-2) current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2-Pt/C-based electrolyzer.
引用
收藏
页数:9
相关论文
共 96 条
[1]   Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting [J].
Cai, Guorui ;
Zhang, Wang ;
Jiao, Long ;
Yu, Shu-Hong ;
Jiang, Hai-Long .
CHEM, 2017, 2 (06) :791-802
[2]   Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts [J].
Chan, Zamyla Morgan ;
Kitchaev, Daniil A. ;
Weker, Johanna Nelson ;
Schnedermann, Christoph ;
Lim, Kipil ;
Ceder, Gerbrand ;
Tumas, William ;
Toney, Michael F. ;
Nocera, Daniel G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (23) :E5261-E5268
[3]   Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction [J].
Chen, Dawei ;
Qiao, Man ;
Lu, Ying-Rui ;
Hao, Li ;
Liu, Dongdong ;
Dong, Chung-Li ;
Li, Yafei ;
Wang, Shuangyin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (28) :8691-8696
[4]   Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting [J].
Chen, Gao-Feng ;
Ma, Tian Yi ;
Liu, Zhao-Qing ;
Li, Nan ;
Su, Yu-Zhi ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) :3314-3323
[5]   Atomic-Scale CoOx Species in Metal-Organic Frameworks for Oxygen Evolution Reaction [J].
Dou, Shuo ;
Dong, Chung-Li ;
Hu, Zhe ;
Huang, Yu-Cheng ;
Chen, Jeng-Lung ;
Tao, Li ;
Yan, Dafeng ;
Chen, Dawei ;
Shen, Shaohua ;
Chou, Shulei ;
Wang, Shuangyin .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (36)
[6]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[7]   Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting [J].
Duan, Jingjing ;
Chen, Sheng ;
Vasileff, Anthony ;
Qiao, Shi Zhang .
ACS NANO, 2016, 10 (09) :8738-8745
[8]   Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts [J].
Feng, Jin-Xian ;
Tong, Si-Yao ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (15) :5118-5126
[9]   High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting [J].
Feng, Liang-Liang ;
Yu, Guangtao ;
Wu, Yuanyuan ;
Li, Guo-Dong ;
Li, Hui ;
Sun, Yuanhui ;
Asefa, Tewodros ;
Chen, Wei ;
Zou, Xiaoxin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) :14023-14026
[10]   Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH [J].
Goerlin, Mikaela ;
de Araujo, Jorge Ferreira ;
Schmies, Henrike ;
Bernsmeier, Denis ;
Dresp, Soeren ;
Gliech, Manuel ;
Jusys, Zenonas ;
Chernev, Petko ;
Kraehnert, Ralph ;
Dau, Holger ;
Strasser, Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (05) :2070-2082