A simple and direct reading flow meter fabricated by two-photon polymerization for microfluidic channel

被引:35
作者
Liu, Yi-Jui [1 ]
Yang, Juin-Yi [1 ]
Nie, Yung-Mau [2 ]
Lu, Chun-Hung [3 ]
Huang, Eric Dowkon [3 ]
Shin, Chow-Shing [3 ]
Baldeck, Patrice [4 ]
Lin, Chih-Lang [5 ]
机构
[1] Feng Chia Univ, Dept Automat Control Engn, Taichung 407, Taiwan
[2] Natl Chi Nan Univ, Dept Appl Mat & Optoelect Engn, Puli 545, Nantao, Taiwan
[3] Natl Taiwan Univ, Dept Mech Engn, Taipei 106, Taiwan
[4] Univ Grenoble 1, CNRS, LIPhy UMR 5588, F-38041 Grenoble, France
[5] Cent Taiwan Univ Sci & Technol, Inst Biomed Engn & Mat Sci, Taichung 406, Taiwan
关键词
Flow meter; Two-photon polymerization; Microchannel; Microfluidic chip; Direct reading; ON-A-CHIP; OPTICAL TWEEZERS; CANTILEVER; DEVICES; DRIVEN;
D O I
10.1007/s10404-014-1440-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study introduces an innovative micromachine that enables precise measurement of the flow rate at the micron scale (mu l/min) in microfluidic channel. It is fabricated by the state-of-the-art technique of two-photon polymerization and consists of: a rod-spring, a water-drop-shaped frame, and an indicator situated inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. In the practical tests, the flow successfully agitates the spring in a proper deflection. The relationship between the flow rate and the deflection angle was calibrated.
引用
收藏
页码:427 / 431
页数:5
相关论文
共 25 条
[1]   Lab-on-chip technologies:: making a microfluidic network and coupling it into a complete microsystem -: a review [J].
Abgrall, P. ;
Gue, A-M .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) :R15-R49
[2]   Microfluidic devices for cellomics: a review [J].
Andersson, H ;
van den Berg, A .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 92 (03) :315-325
[3]   Method for flow measurement in microfluidic channels based on electrical impedance spectroscopy [J].
Arjmandi, Nima ;
Liu, Chengxun ;
Van Roy, Willem ;
Lagae, Liesbet ;
Borghs, Gustaaf .
MICROFLUIDICS AND NANOFLUIDICS, 2012, 12 (1-4) :17-23
[4]  
Attia R, 2009, LAB CHIP, V9, P1213, DOI [10.1039/b813860e, 10.1039/b813860c]
[5]   Physics and applications of microfluidics in biology [J].
Beebe, DJ ;
Mensing, GA ;
Walker, GM .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :261-286
[6]   Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip [J].
Boer, G. ;
Johann, R. ;
Rohner, J. ;
Merenda, F. ;
Delacretaz, G. ;
Renaud, Ph. ;
Salathe, R. -P. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (11)
[7]   Lab-on-a-chip: microfluidics in drug discovery [J].
Dittrich, PS ;
Manz, A .
NATURE REVIEWS DRUG DISCOVERY, 2006, 5 (03) :210-218
[8]   A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes [J].
Eriksson, Emma ;
Enger, Jonas ;
Nordlander, Bodil ;
Erjavec, Nika ;
Ramser, Kerstin ;
Goksor, Mattias ;
Hohmann, Stefan ;
Nystrom, Thomas ;
Hanstorp, Dag .
LAB ON A CHIP, 2007, 7 (01) :71-76
[9]   Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels [J].
Iosin, Monica ;
Scheul, Teodora ;
Nizak, Clement ;
Stephan, Olivier ;
Astilean, Simion ;
Baldeck, Patrice .
MICROFLUIDICS AND NANOFLUIDICS, 2011, 10 (03) :685-690
[10]   Integrated optical motor [J].
Kelemen, L ;
Valkai, S ;
Ormos, P .
APPLIED OPTICS, 2006, 45 (12) :2777-2780