Three Electron Reversible Redox Reaction in Sodium Vanadium Chromium Phosphate as a High-Energy-Density Cathode for Sodium-Ion Batteries

被引:151
作者
Zhao, Yongjie [1 ,2 ,3 ]
Gao, Xiangwen [2 ,3 ]
Gao, Hongcai [2 ,3 ]
Jin, Haibo [1 ]
Goodenough, John B. [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Construct Tailorable Adv Funct Ma, Beijing 100081, Peoples R China
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
cathode materials; NASICON structure; sodium-ion batteries; symmetric cell; three-electron redox reaction; CARBON MATRIX; STORAGE; NA3V2(PO4)(3); PERFORMANCE; NA3VCR(PO4)(3); NA;
D O I
10.1002/adfm.201908680
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A sodium-ion battery operating at room temperature is of great interest for large-scale stationary energy storage because of its intrinsic cost advantage. However, the development of a high capacity cathode with high energy density remains a great challenge. In this work, sodium super ionic conductor-structured Na3V2-xCrx(PO4)(3) is achieved through the sol-gel method; Na3V1.5Cr0.5(PO4)(3) is demonstrated to have a capacity of 150 mAh g(-1) with reversible three-electron redox reactions after insertion of a Na+, consistent with the redox couples of V2+/(3+), V3+/(4+), and V4+/(5+). Moreover, a symmetric sodium-ion full cell utilizing Na3V1.5Cr0.5(PO4)(3) as both the cathode and anode exhibits an excellent rate capability and cyclability with a capacity of 70 mAh g(-1) at 1 A g(-1). Ex situ X-ray diffraction analysis and in situ impedance measurements are performed to reveal the sodium storage mechanism and the structural evolution during cycling.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries [J].
Aragon, M. J. ;
Lavela, P. ;
Alcantara, R. ;
Tirado, J. L. .
ELECTROCHIMICA ACTA, 2015, 180 :824-830
[2]   Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries [J].
Bianchini, Matteo ;
Xiao, Penghao ;
Wang, Yan ;
Ceder, Gerbrand .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[3]  
Chen F., 2018, SMALL METHODS, V2
[4]   3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries [J].
Fang, Yongjin ;
Xiao, Lifen ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Ai, Xinping ;
Huang, Yunhui ;
Yang, Hanxi .
ADVANCED ENERGY MATERIALS, 2016, 6 (19)
[5]  
Gao H., 2016, ANGEW CHEM, V128, P12960, DOI DOI 10.1002/ANGE.201606508
[6]   Na3MnZr(PO4)3: A High-Voltage Cathode for Sodium Batteries [J].
Gao, Hongcai ;
Seymour, Ieuan D. ;
Xin, Sen ;
Xue, Leigang ;
Henkelman, Graeme ;
Goodenough, John B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (51) :18192-18199
[7]   Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples [J].
Gao, Hongcai ;
Li, Yutao ;
Park, Kyusung ;
Goodenough, John B. .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6553-6559
[8]   Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights [J].
Gauthier, Magali ;
Carney, Thomas J. ;
Grimaud, Alexis ;
Giordano, Livia ;
Pour, Nir ;
Chang, Hao-Hsun ;
Fenning, David P. ;
Lux, Simon F. ;
Paschos, Odysseas ;
Bauer, Christoph ;
Magia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22) :4653-4672
[9]   FAST NA+-ION TRANSPORT IN SKELETON STRUCTURES [J].
GOODENOUGH, JB ;
HONG, HYP ;
KAFALAS, JA .
MATERIALS RESEARCH BULLETIN, 1976, 11 (02) :203-220
[10]   Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium-Ion Batteries [J].
Jian, Zelang ;
Yuan, Chenchen ;
Han, Wenze ;
Lu, Xia ;
Gu, Lin ;
Xi, Xuekui ;
Hu, Yong-Sheng ;
Li, Hong ;
Chen, Wen ;
Chen, Dongfeng ;
Ikuhara, Yuichi ;
Chen, Liquan .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (27) :4265-4272