The best constant approximant operators in Lorentz spaces Γp,w and their applications

被引:4
作者
Ciesielski, M. [1 ]
Kaminska, A. [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
D O I
10.1016/j.jat.2010.04.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article we extend the best constant approximant operator from Lorentz spaces rp,u, to for any I < p < infinity and w >= 0 a locally integrable weight function, and from Gamma(1,w) to the space of all measurable functions L-0. Then we establish several properties of the extended best constant approximant operator and finally, we prove a generalized version of the Lebesgue Differentiation Theorem in L0. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1518 / 1544
页数:27
相关论文
共 20 条
[1]  
Bennett C., 1988, PURE APPL MATH SERIE, V129
[2]   ON THE ISOMETRIES OF THE LORENTZ FUNCTION-SPACES [J].
CAROTHERS, NL ;
HAYDON, R ;
LIN, PK .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 84 (1-2) :265-287
[3]  
Cheney E.W., 1998, INTRO APPROXIMATION
[4]  
Ciesielski M., Maximal inequalities and generalizations of Lebesgue's Differentiation Theorems in Lorentz spaces Gammap
[5]  
w
[6]   Gateaux derivatives and their applications to approximation in Lorentz spaces Γp,w [J].
Ciesielski, Maciej ;
Kaminska, Anna ;
Pluciennik, Ryszard .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (09) :1242-1264
[7]  
Favier S., 2004, Real Anal. Exchange, V30, P29
[8]   On Lorentz spaces Γp,w [J].
Kaminska, A ;
Maligranda, L .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 140 (1) :285-318
[9]  
Krein S G., 1982, Interpolation of Linear Operators
[10]   BEST APPROXIMANTS IN LPHI-SPACES [J].
LANDERS, D ;
ROGGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (02) :215-237