Genome-wide identification and analysis of the MADS-box gene family in apple

被引:115
作者
Tian, Yi [1 ]
Dong, Qinglong [1 ]
Ji, Zhirui [1 ]
Chi, Fumei [1 ]
Cong, Peihua [1 ]
Zhou, Zongshan [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Pomol, Xingcheng 125100, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Apple; MADS-box; Gene family; Phylogenetic analysis; Expression analysis; TRANSCRIPTION FACTOR FAMILY; PHYLOGENETIC ANALYSES; EXPRESSION ANALYSIS; FRUIT-DEVELOPMENT; ARABIDOPSIS; EVOLUTION; DUPLICATION; PROTEINS; SPECIFICITY; DIVERGENCE;
D O I
10.1016/j.gene.2014.11.018
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKCc, MIKC*, M alpha, M beta, M gamma and M delta) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 290
页数:14
相关论文
共 51 条
[1]   An ancestral MADS-box gene duplication occurred before the divergence of plants and animals [J].
Alvarez-Buylla, ER ;
Pelaz, S ;
Liljegren, SJ ;
Gold, SE ;
Burgeff, C ;
Ditta, GS ;
de Pouplana, LR ;
Martinez-Castilla, L ;
Yanofsky, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5328-5333
[2]   Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion [J].
Ampomah-Dwamena, C ;
Morris, BA ;
Sutherland, P ;
Veit, B ;
Yao, JL .
PLANT PHYSIOLOGY, 2002, 130 (02) :605-617
[3]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[4]   MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress [J].
Arora, Rita ;
Agarwal, Pinky ;
Ray, Swatismita ;
Singh, Ashok Kumar ;
Singh, Vijay Pal ;
Tyagi, Akhilesh K. ;
Kapoor, Sanjay .
BMC GENOMICS, 2007, 8 (1)
[5]   The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J].
Cannon S.B. ;
Mitra A. ;
Baumgarten A. ;
Young N.D. ;
May G. .
BMC Plant Biology, 4 (1)
[6]   Genome Wide Analysis of the Apple MYB Transcription Factor Family Allows the Identification of MdoMYB121 Gene Confering Abiotic Stress Tolerance in Plants [J].
Cao, Zhong-Hui ;
Zhang, Shi-Zhong ;
Wang, Rong-Kai ;
Zhang, Rui-Fen ;
Hao, Yu-Jin .
PLOS ONE, 2013, 8 (07)
[7]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[8]   Multiple interactions amongst floral homeotic MADS box proteins [J].
Davies, B ;
EgeaCortines, M ;
Silva, ED ;
Saedler, H ;
Sommer, H .
EMBO JOURNAL, 1996, 15 (16) :4330-4343
[9]   And then there were many: MADS goes genomic [J].
De Bodt, S ;
Raes, J ;
Van de Peer, YV ;
Theissen, G .
TRENDS IN PLANT SCIENCE, 2003, 8 (10) :475-483
[10]   Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine [J].
Diaz-Riquelme, Jose ;
Lijavetzky, Diego ;
Martinez-Zapater, Jose M. ;
Jose Carmona, Maria .
PLANT PHYSIOLOGY, 2009, 149 (01) :354-369