Family of coherence measures and duality between quantum coherence and path distinguishability

被引:53
作者
Xiong, Chunhe [1 ]
Kumar, Asutosh [2 ]
Wu, Junde [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Magadh Univ, PG Dept Phys, Gaya Coll, Rampur 823001, Gaya, India
基金
中国国家自然科学基金;
关键词
RELATIVE ENTROPY; ENTANGLEMENT; INFORMATION; MECHANICS; CRYPTOGRAPHY; CAPACITY;
D O I
10.1103/PhysRevA.98.032324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherence measures and their operational interpretations lay the cornerstone of coherence theory. In this paper, we introduce a class of coherence measures with alpha affinity, say alpha affinity of coherence for alpha is an element of(0, 1). Furthermore, we obtain the analytic formulas for these coherence measures and study their corresponding convex roof extension. We provide an operational interpretation for 1/2 affinity of coherence by showing that it is equal to the error probability to discrimination a set of pure states with the least-square measurement. By employing this relationship we regain the optimal measurement for equiprobable quantum state discrimination. Moreover, we compare these coherence quantifiers and establish a complementarity relation between the 1/2 affinity of coherence and path distinguishability for some special cases.
引用
收藏
页数:11
相关论文
共 65 条
[1]   Measures and applications of quantum correlations [J].
Adesso, Gerardo ;
Bromley, Thomas R. ;
Cianciaruso, Marco .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (47)
[2]  
Anand N., ARXIV161104542
[3]  
[Anonymous], 1943, Bulletin of the Calcultta Mathematical Society, DOI DOI 10.1038/157869B0
[4]  
[Anonymous], 2014, Matrix analysis
[5]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[6]   A sharp continuity estimate for the von Neumann entropy [J].
Audenaert, Koenraad M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :8127-8136
[7]   α-z-Renyi relative entropies [J].
Audenaert, Koenraad M. R. ;
Datta, Nilanjana .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
[8]   Reversing quantum dynamics with near-optimal quantum and classical fidelity [J].
Barnum, H ;
Knill, E .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2097-2106
[9]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[10]  
Belavkin V. P., 1975, Stochastics, V1, P315, DOI 10.1080/17442507508833114