pth moment exponential stability and convergence analysis of semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion

被引:0
作者
Wen, Xueqi [1 ]
Li, Zhi [1 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Hubei, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 08期
基金
中国国家自然科学基金;
关键词
semilinear stochastic evolution equation; Riemann-Liouville fractional Brownian motion; pth moment exponential stability; exponential Euler method; strong convergence; CALCULUS; RESPECT; SYSTEMS; NOISE;
D O I
10.3934/math.2022806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many works have been done on Brownian motion or fractional Brownian motion, but few of them have considered the simpler type, Riemann-Liouville fractional Brownian motion. In this paper, we investigate the semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion with Hurst parameter H < 1/2. First, we prove the pth moment exponential stability of mild solution. Then, based on the maximal inequality from Lemma 10 in [1], the uniform boundedness of pth moment of both exact and numerical solutions are studied, and the strong convergence of the exponential Euler method is established as well as the convergence rate. Finally, two multi-dimensional examples are carried out to demonstrate the consistency with theoretical results.
引用
收藏
页码:14652 / 14671
页数:20
相关论文
共 41 条
[1]  
Ales E., 2003, Stochastic Stochastic Report, V75, P129, DOI [10.1080/1045112031000078917, DOI 10.1080/1045112031000078917]
[2]   Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences [J].
Allegrini, P ;
Buiatti, M ;
Grigolini, P ;
West, BJ .
PHYSICAL REVIEW E, 1998, 57 (04) :4558-4567
[3]   Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (01) :121-139
[4]  
Alòs E, 2001, TAIWAN J MATH, V5, P609
[5]   Testing for a change of the long-memory parameter [J].
Beran, J ;
Terrin, N .
BIOMETRIKA, 1996, 83 (03) :627-638
[6]  
Biagini F, 2008, PROBAB APPL SER, P1
[7]   Numerical study of amplitude equations for SPDEs with degenerate forcing [J].
Bloemker, Dirk ;
Mohammed, Wael W. ;
Nolde, Christian ;
Woehrl, Franz .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (18) :2499-2516
[8]   Universal Algorithm for Identification of Fractional Brownian Motion. A Case of Telomere Subdiffusion [J].
Burnecki, Krzysztof ;
Kepten, Eldad ;
Janczura, Joanna ;
Bronshtein, Irena ;
Garini, Yuval ;
Weron, Aleksander .
BIOPHYSICAL JOURNAL, 2012, 103 (09) :1839-1847
[9]   The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion [J].
Caraballo, T. ;
Garrido-Atienza, M. J. ;
Taniguchi, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3671-3684
[10]   Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2) [J].
Cheridito, P ;
Nualart, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06) :1049-1081