General coordinate invariance in quantum many-body systems

被引:29
|
作者
Brauner, Tomas [1 ,2 ]
Endlich, Solomon [3 ]
Monin, Alexander [3 ]
Penco, Riccardo [4 ,5 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[2] ASCR, Inst Nucl Phys, Dept Theoret Phys, Rez 25068, Czech Republic
[3] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland
[4] Columbia Univ, Dept Phys, New York, NY 10027 USA
[5] Columbia Univ, ISCAP, New York, NY 10027 USA
来源
PHYSICAL REVIEW D | 2014年 / 90卷 / 10期
基金
奥地利科学基金会; 瑞士国家科学基金会;
关键词
CHIRAL PERTURBATION-THEORY; EXOTIC CENTRAL EXTENSION; FORMULATION;
D O I
10.1103/PhysRevD.90.105016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We extend the notion of general coordinate invariance to many-body, not necessarily relativistic, systems. As an application, we investigate nonrelativistic general covariance in Galilei-invariant systems. The peculiar transformation rules for the background metric and gauge fields, first introduced by Son and Wingate in 2005 and refined in subsequent works, follow naturally from our framework. Our approach makes it clear that Galilei or Poincare symmetry is by no means a necessary prerequisite for making the theory invariant under coordinate diffeomorphisms. General covariance merely expresses the freedom to choose spacetime coordinates at will, whereas the true, physical symmetries of the system can be separately implemented as "internal" symmetries within the vielbein formalism. A systematic way to implement such symmetries is provided by the coset construction. We illustrate this point by applying our formalism to nonrelativistic s-wave superfluids.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effective Lagrangians for quantum many-body systems
    Jens O. Andersen
    Tomáš Brauner
    Christoph P. Hofmann
    Aleksi Vuorinen
    Journal of High Energy Physics, 2014
  • [22] Irreversible dynamics in quantum many-body systems
    Schmitt, Markus
    Kehrein, Stefan
    PHYSICAL REVIEW B, 2018, 98 (18)
  • [23] Quantum Many-Body Systems in Thermal Equilibrium
    Alhambra, Alvaro M.
    PRX QUANTUM, 2023, 4 (04):
  • [24] Quantum hypothesis testing in many-body systems
    de Boer, Jan
    Godet, Victor
    Kastikainen, Jani
    Keski-Vakkuri, Esko
    SCIPOST PHYSICS CORE, 2021, 4 (02):
  • [25] Aspects of Entanglement in Quantum Many-Body Systems
    John W. Clark
    Hessam Habibian
    Aikaterini D. Mandilara
    Manfred L. Ristig
    Foundations of Physics, 2010, 40 : 1200 - 1220
  • [26] PERTURBATION EXPANSIONS FOR QUANTUM MANY-BODY SYSTEMS
    GELFAND, MP
    SINGH, RRP
    HUSE, DA
    JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) : 1093 - 1142
  • [27] Emergence of Objectivity for Quantum Many-Body Systems
    Ollivier, Harold
    ENTROPY, 2022, 24 (02)
  • [28] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [29] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [30] Measure synchronization in quantum many-body systems
    Qiu, Haibo
    Julia-Diaz, Bruno
    Angel Garcia-March, Miguel
    Polls, Artur
    PHYSICAL REVIEW A, 2014, 90 (03)