General coordinate invariance in quantum many-body systems

被引:29
|
作者
Brauner, Tomas [1 ,2 ]
Endlich, Solomon [3 ]
Monin, Alexander [3 ]
Penco, Riccardo [4 ,5 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[2] ASCR, Inst Nucl Phys, Dept Theoret Phys, Rez 25068, Czech Republic
[3] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland
[4] Columbia Univ, Dept Phys, New York, NY 10027 USA
[5] Columbia Univ, ISCAP, New York, NY 10027 USA
来源
PHYSICAL REVIEW D | 2014年 / 90卷 / 10期
基金
奥地利科学基金会; 瑞士国家科学基金会;
关键词
CHIRAL PERTURBATION-THEORY; EXOTIC CENTRAL EXTENSION; FORMULATION;
D O I
10.1103/PhysRevD.90.105016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We extend the notion of general coordinate invariance to many-body, not necessarily relativistic, systems. As an application, we investigate nonrelativistic general covariance in Galilei-invariant systems. The peculiar transformation rules for the background metric and gauge fields, first introduced by Son and Wingate in 2005 and refined in subsequent works, follow naturally from our framework. Our approach makes it clear that Galilei or Poincare symmetry is by no means a necessary prerequisite for making the theory invariant under coordinate diffeomorphisms. General covariance merely expresses the freedom to choose spacetime coordinates at will, whereas the true, physical symmetries of the system can be separately implemented as "internal" symmetries within the vielbein formalism. A systematic way to implement such symmetries is provided by the coset construction. We illustrate this point by applying our formalism to nonrelativistic s-wave superfluids.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Many-body Wigner quantum systems
    Palev, TD
    Stoilova, NI
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (05) : 2506 - 2523
  • [2] QUANTUM THEORY OF MANY-BODY SYSTEMS
    HUGENHOLTZ, NM
    REPORTS ON PROGRESS IN PHYSICS, 1965, 28 : 201 - +
  • [3] QUANTUM SCALING IN MANY-BODY SYSTEMS
    CONTINENTINO, MA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 239 (03): : 179 - 213
  • [4] Disorder in Quantum Many-Body Systems
    Vojta, Thomas
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 233 - 252
  • [5] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [6] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [7] Seniority in quantum many-body systems
    Van Isacker, P.
    SYMMETRIES IN NATURE, 2010, 1323 : 141 - 152
  • [8] Negentropy in Many-Body Quantum Systems
    Quarati, Piero
    Lissia, Marcello
    Scarfone, Antonio M.
    ENTROPY, 2016, 18 (02)
  • [9] Rotating frames and gauge invariance in three-dimensional many-body quantum systems
    Bouzas, AO
    Gamboa, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6773 - 6805
  • [10] Rotating frames and gauge invariance in two-dimensional many-body quantum systems
    Gamboa, JM
    Bouzas, AO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (25): : 7061 - 7080