A three charge-states model for silicon nanocrystals nonvolatile memories

被引:10
作者
Busseret, C [1 ]
Ferraton, S
Montès, L
Zimmermann, J
机构
[1] INSA, Phys Mat Lab, Villeurbanne, France
[2] UJF, UMR, CNRS, INPG, F-38016 Grenoble, France
关键词
charge dynamics; modeling; nonvolatile single-electron memory; silicon nanocrystals (Si-nc);
D O I
10.1109/TED.2005.860630
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the field of nonvolatile memories, substantial improvement of reliability is obtained by replacing the continuous polysilicon floating gate by a planar distribution of silicon nanocrystals, each acting as a storage node. The test devices in the present paper are MOS capacitors containing a two-dimensional layer of nanocrystals located 2.5 mn away from the oxide/substrate interface, inside the SiO2. This work presents various measurements of the charge current versus either bias voltage or time. On the other side, the charge and discharge dynamics of the nanocrystals had already been described by De Salvo using a model borrowed from the conventional floating-gate memory. We show this approach to be not completely suitable to explain the experimental observations. Thus, we describe and apply a so-called granular model, based on a mono-electronic principle limited by Coulomb blockade, in which electrons interact with the nanocrystals one by one. Omitting the reality of such a one-by-one principle may involve important mistakes in the interpretation of phenomena.
引用
收藏
页码:14 / 22
页数:9
相关论文
共 19 条
[1]   Nucleation control of CVD growth silicon nanocrystals for quantum devices [J].
Baron, T ;
Mazen, F ;
Busseret, C ;
Souifi, A ;
Mur, P ;
Fournel, F ;
Séméria, MN ;
Moriceau, H ;
Aspard, B ;
Gentile, P .
MICROELECTRONIC ENGINEERING, 2002, 61-2 :511-515
[2]   Low pressure chemical vapor deposition growth of silicon quantum dots on insulator for nanoelectronics devices [J].
Baron, T ;
Martin, F ;
Mur, P ;
Wyon, C ;
Dupuy, M ;
Busseret, C ;
Souifi, A ;
Guillot, G .
APPLIED SURFACE SCIENCE, 2000, 164 :29-34
[3]  
Brown W. D., 1998, Nonvolatile Semiconductor Memory Technology
[4]   Discharge mechanisms modeling in LPCVD silicon nanocrystals using C-V and capacitance transient techniques [J].
Busseret, C ;
Souifi, A ;
Baron, T ;
Guillot, G ;
Martin, F ;
Semeria, MN ;
Gautier, J .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (5-6) :493-500
[5]  
BUSSERET C, UNPUB SOLID STAT ELE
[6]   Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices [J].
De Salvo, B ;
Ghibaudo, G ;
Pananakakis, G ;
Masson, P ;
Baron, T ;
Buffet, N ;
Fernandes, A ;
Guillaumot, B .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (08) :1789-1799
[7]   DETERMINATION OF TUNNELING PARAMETERS IN ULTRA-THIN OXIDE LAYER POLY-SI/SIO2/SI STRUCTURES [J].
DEPAS, M ;
VERMEIRE, B ;
MERTENS, PW ;
VANMEIRHAEGHE, RL ;
HEYNS, MM .
SOLID-STATE ELECTRONICS, 1995, 38 (08) :1465-1471
[8]   Direct extraction of McWhorter's constant from LFN spectra of MOSFETs with planar layers of Si nano-crystals imbedded in gate SiO2 [J].
Ferraton, S ;
Zimmermann, J ;
Montès, L ;
Ghibaudo, G ;
Brini, J ;
Gurgul, J ;
Chroboczek, JA .
NOISE IN DEVICES AND CIRCUITS II, 2004, 5470 :560-565
[9]   Charge dynamics of silicon nanocrystals in MOS capacitors [J].
Ferraton, S ;
Montès, L ;
Souifi, A ;
Zimmermann, J .
MICROELECTRONIC ENGINEERING, 2004, 73-4 :741-745
[10]   Evidence of room temperature charging effects of silicon nanocrystals inside metal-oxide-semiconductor capacitors using feedback charge measurements [J].
Ferraton, S ;
Montès, L ;
Souifi, A ;
Zimmermann, J .
MICROELECTRONIC ENGINEERING, 2003, 67-8 :858-864