On the 'Section Conjecture' in anabelian geometry

被引:0
作者
Koenigsmann, J [1 ]
机构
[1] Inst Math Log & Grundlagen Math, D-79104 Freiburg, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2005年 / 588卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth projective curve of genus > 1 over a field K with function field K(X), let pi(1)X be the arithmetic fundamental group of X over K and let G(F) denote the absolute Galois group of a field F. The section conjecture in Grothendieck's anabelian geometry says that the sections of the canonical projection pi(1)(X) -> G(K) are ( up to conjugation) in one-to-one correspondence with the K-rational points of X, if K is finitely generated over Q. The birational variant conjectures a similar correspondence w.r.t. the sections of the projection G(K(X)) -> G(K).
引用
收藏
页码:221 / 235
页数:15
相关论文
共 22 条
[1]   DESCENT FOR RATIONAL VARITIES .2. [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :375-492
[2]  
DEBES P, 1995, CONT MATH, V186, P217, DOI DOI 10.1090/C0NM/186/02182.MR1352273
[3]  
FRIED M., 1986, FIELD ARITHMETIC
[4]  
Grothendieck Alexander, 1997, LONDON MATH SOC LECT, V242, p[285, 49]
[5]   Non-abelian cohomology and rational points [J].
Harari, D ;
Skorobogatov, AN .
COMPOSITIO MATHEMATICA, 2002, 130 (03) :241-273
[6]  
HUISMAN J, UNPUB FUNDAMENTAL GR
[7]  
JARDIN M, 1996, HDB ALGEBRA, V1, P269
[8]  
KOENIGSMANN J, 1995, J REINE ANGEW MATH, V465, P165
[9]  
Koenigsmann Jochen, 2003, FIELDS I COMMUNICATI, V33, P107
[10]   IMMEDIATE AND PURELY WILD EXTENSIONS OF VALUED FIELDS [J].
KUHLMANN, FV ;
PANK, M ;
ROQUETTE, P .
MANUSCRIPTA MATHEMATICA, 1986, 55 (01) :39-67