Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes

被引:85
作者
Shah, K. [1 ]
McKee, C. [1 ]
Chalise, D. [1 ]
Jain, A. [1 ]
机构
[1] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Lithium-ion cells; Thermal runaway; Convective cooling; Heat pipe; Thermal management; THERMAL MANAGEMENT; HIGH-POWER; LITHIUM; BATTERIES; SYSTEMS; CONDUCTIVITY; TEMPERATURE; BEHAVIOR; PACKS;
D O I
10.1016/j.energy.2016.07.076
中图分类号
O414.1 [热力学];
学科分类号
摘要
While Li-ion cells offer excellent energy conversion and storage capabilities for multiple applications, including electric vehicles, heat removal from a Li-ion cell remains a serious technological challenge that directly limits performance, and poses serious safety concerns. Due to poor thermal conductivity of Li-ion cells, traditional cooling methods like air cooling on the cell surface do not effectively access and cool the core. This may lead to overheating of the cell core. This paper investigates the cooling of Li-ion cells using an annular channel through the axis of the cell. Air flow through this channel and heat pipe insertion are both shown to result in effective cooling. A temperature reduction of 18-20 degrees C in the cell core is observed in heat pipe experiments, depending on heat pipe size, for 1.62 W heat dissipation. Similar effect is observed when a thin metal rod is used instead of a heat pipe. Experimental measurements are close to finite-element simulation results. Experiments demonstrate that a heat pipe successfully prevents overheating in case of sudden increase in heat generation due to malfunction such as cell shorting. This paper illustrates fundamental thermal-electrochemical trade-offs, and facilitates the development of novel and effective cooling techniques for Li-ion cells. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:852 / 860
页数:9
相关论文
共 46 条
[1]   Diagnostic examination of thermally abused high-power lithium-ion cells [J].
Abraham, D. P. ;
Roth, E. P. ;
Kostecki, R. ;
McCarthy, K. ;
MacLaren, S. ;
Doughty, D. H. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :648-657
[2]   Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation [J].
Akbarzadeh, A ;
Wadowski, T .
APPLIED THERMAL ENGINEERING, 1996, 16 (01) :81-87
[3]  
Amini A, 2016, ENERGY IN PRESS
[4]  
[Anonymous], 2006, Introduction to Heat Transfer
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[7]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[8]   Failure mechanism of Li-ion battery at overcharge conditions [J].
Belov, D. ;
Yang, Mo-Hua .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :885-894
[9]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[10]  
Bharathan D, 2005, P IEEE C VEH POW PRO