Carbon dioxide-assisted bioassembly of cell-loaded scaffolds from polymeric porous microspheres

被引:18
作者
Ma, Teng [1 ]
Zhang, Yu S. [4 ,5 ]
Chen, Ai-Zheng [1 ,2 ,3 ,4 ,5 ]
Ju, Jie [4 ,5 ]
Gu, Chen-Wei [1 ]
Kankala, Ranjith Kumar [1 ,2 ,3 ]
Wang, Shi-Bin [1 ,2 ,3 ]
机构
[1] Huaqiao Univ, Coll Chem Engn, Xiamen 361021, Peoples R China
[2] Huaqiao Univ, Inst Biomat & Tissue Engn, Xiamen 361021, Peoples R China
[3] Huaqiao Univ, Fujian Prov Key Lab Biochem Technol, Xiamen 361021, Peoples R China
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Biomat Innovat Res Ctr, Cambridge, MA 02139 USA
[5] MIT, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
Porous microspheres; Porous scaffolds; Subcritical CO2; Sintering; Tissue engineering; SUPERCRITICAL FLUIDS; SUBCRITICAL CO2; STEM-CELLS; TISSUE; DIFFERENTIATION; FABRICATION; MICROPARTICLES; MICROCARRIERS; CARTILAGE; SURVIVAL;
D O I
10.1016/j.supflu.2016.10.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A cell-friendly strategy based on the subcritical carbon dioxide (Sub-CO2) sintering was developed for convenient single-step bioassembly of scaffolds from cellularized poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The method has provided a versatile strategy to utilize the hierarchical voids of the scaffold, which allowed seeded cells to proliferate for 14 days (cartilage cells) and 21 days (fibroblasts), respectively. Furthermore, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) images indicated that the cartilage cells favored the surface of the porous microspheres, while the fibroblasts tended to grow into the porous microspheres and attach onto the walls of the inner pores. This modular strategy provides a convenient way to seed cells prior to bulk scaffold fabrication as the Sub-CO2 processing is benign to cells, which will potentially find widespread applications in tissue engineering and regenerative medicine. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 40 条
[1]   Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering [J].
Bhamidipati, Manjari ;
Sridharan, BanuPriya ;
Scurto, Aaron M. ;
Detamore, Michael S. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (08) :4892-4899
[2]  
Chen A. Z., 2015, J SUPERCRIT FLUID, V14, P1971
[3]   Porous nanostructured poly-L-lactide scaffolds prepared by phase inversion using supercritical CO2 as a nonsolvent in the presence of ammonium bicarbonate particles [J].
Deng, Aihua ;
Chen, Aizheng ;
Wang, Shibin ;
Li, Yi ;
Liu, Yuangang ;
Cheng, Xiaoxia ;
Zhao, Zheng ;
Lin, Dongliang .
JOURNAL OF SUPERCRITICAL FLUIDS, 2013, 77 :110-116
[4]   Polymeric Scaffolds in Tissue Engineering Application: A Review [J].
Dhandayuthapani, Brahatheeswaran ;
Yoshida, Yasuhiko ;
Maekawa, Toru ;
Kumar, D. Sakthi .
INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2011, 2011
[5]  
Dormer NH, 2012, TISSUE ENG PT A, V18, P757, DOI [10.1089/ten.tea.2011.0176, 10.1089/ten.TEA.2011.0176]
[6]   Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine [J].
Duarte, Ana Rita C. ;
Santo, Vitor E. ;
Alves, Anabela ;
Siiva, Simone S. ;
Moreira-Silva, Joana ;
Silva, Tiago H. ;
Marques, Alexandra P. ;
Sousa, Rui A. ;
Gomes, Manuela E. ;
Mano, Joao F. ;
Reis, Rui L. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2013, 79 :177-185
[7]   Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology [J].
Garcia-Gonzalez, Carlos A. ;
Concheiro, Angel ;
Alvarez-Lorenzo, Carmen .
BIOCONJUGATE CHEMISTRY, 2015, 26 (07) :1159-1171
[8]   A supercritical CO2 injection system for the production of polymer/mammalian cell composites [J].
Ginty, Patrick J. ;
Howard, Daniel ;
Upton, Clare E. ;
Barry, John J. A. ;
Rose, Felicity R. A. J. ;
Shakesheff, Kevin M. ;
Howdle, Steven M. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2008, 43 (03) :535-541
[9]   Mammalian cell survival and processing in supercritical CO2 [J].
Ginty, Patrick J. ;
Howard, Daniel ;
Rose, Felicity R. A. J. ;
Whitaker, Martin J. ;
Barry, John J. A. ;
Tighe, Patrick ;
Mutch, Stacey R. ;
Serhatkulu, Gulay ;
Oreffo, Richard O. C. ;
Howdle, Steven M. ;
Shakesheff, Kevin M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (19) :7426-7431
[10]   Tissue Engineering Polymeric Microcarriers with Macroporous Morphology and Bone-Bioactive Surface [J].
Hong, Seok-Jung ;
Yu, Hye-Sun ;
Kim, Hae-Won .
MACROMOLECULAR BIOSCIENCE, 2009, 9 (07) :639-645