A Fish Biomass Prediction Model for Aquaponics System Using Machine Learning Algorithms

被引:4
作者
Debroy, Pragnaleena [1 ]
Seban, Lalu [1 ]
机构
[1] NIT Silchar, Silchar, Assam, India
来源
MACHINE LEARNING AND AUTONOMOUS SYSTEMS | 2022年 / 269卷
关键词
MASS;
D O I
10.1007/978-981-16-7996-4_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most of the fish biomass estimation process till now, is based on human intervention, making the process time-consuming, expensive, imprecise, and laborious. Also, no studies have been done on fish biomass estimation for aquaponics systems. This paper proposes two prediction models for fish weight estimation of the aquaponics system using the Artificial neural network and its hybrid with fuzzy logic i.e., Adaptive neuro-fuzzy inference system (ANFIS). The Feed-forward backpropagation network is used in the ANN model, and for the fuzzification process in ANFIS model, the Gaussian membership function is employed with Sugeno structure as the fuzzy inference system (FIS). The performance evaluation indicated that ANFIS model had attained the best prediction accuracy in terms of MAE of 0.3141 and RMSE of 0.6379, and R-2 of 0.9808 in comparison with the conventional ANN model. This prediction model can help predict the fish growth of the aquaponics system simply and cost-effectively, supporting farmers in avoiding imbalances in market supply, and demand and economic management.
引用
收藏
页码:383 / 397
页数:15
相关论文
共 20 条
[11]   Binary classification of pumpkin (Cucurbita pepo L.) seeds based on quality features using machine learning algorithms [J].
Cetin, Necati ;
Ropelewska, Ewa ;
Fidan, Sali ;
Ulkucu, Sukru ;
Saban, Pembe ;
Gunaydin, Seda ;
Unlukara, Ali .
EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2024, 250 (02) :409-423
[12]   Binary classification of pumpkin (Cucurbita pepo L.) seeds based on quality features using machine learning algorithms [J].
Necati Çetin ;
Ewa Ropelewska ;
Sali Fidan ;
Şükrü Ülkücü ;
Pembe Saban ;
Seda Günaydın ;
Ali Ünlükara .
European Food Research and Technology, 2024, 250 :409-423
[13]   Estimation of Left Ventricular Ejection Fraction Using Cardiovascular Hemodynamic Parameters and Pulse Morphological Characteristics with Machine Learning Algorithms [J].
Liu, Shing-Hong ;
Yang, Zhi-Kai ;
Pan, Kuo-Li ;
Zhu, Xin ;
Chen, Wenxi .
NUTRIENTS, 2022, 14 (19)
[14]   Prediction model of ocular metastasis from primary liver cancer: Machine learning-based development and interpretation study [J].
Sun, Jin-Qi ;
Wu, Shi-Nan ;
Mou, Zheng-Lin ;
Wen, Jia-Yi ;
Wei, Hong ;
Zou, Jie ;
Li, Qing-Jian ;
Liu, Zhao-Lin ;
Xu, San Hua ;
Kang, Min ;
Ling, Qian ;
Huang, Hui ;
Chen, Xu ;
Wang, Yi-Xin ;
Liao, Xu-Lin ;
Tan, Gang ;
Shao, Yi .
CANCER MEDICINE, 2023, 12 (20) :20482-20496
[15]   Evaluation of Image Processing Technique on Quality Properties of Chickpea Seeds (Cicer arietinum L.) Using Machine Learning Algorithms [J].
Varol, Ihsan Serkan ;
Cetin, Necati ;
Kirnak, Halil .
JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2023, 29 (02) :427-442
[16]   Using a land use regression model with machine learning to estimate ground level PM2.5 [J].
Wong, Pei-Yi ;
Lee, Hsiao-Yun ;
Chen, Yu-Cheng ;
Zeng, Yu-Ting ;
Chern, Yinq-Rong ;
Chen, Nai-Tzu ;
Lung, Shih-Chun Candice ;
Su, Huey-Jen ;
Wu, Chih-Da .
ENVIRONMENTAL POLLUTION, 2021, 277
[17]   Comprehensive prediction of subaerial landslide-tsunamis via slide model- and water body geometry-invariant machine learning techniques [J].
Jenkins, David Gwillym ;
Heller, Valentin ;
Giannakidis, Archontis .
OCEAN ENGINEERING, 2025, 320
[18]   Prediction of a Large-Scale Database of Collision Cross-Section and Retention Time Using Machine Learning to Reduce False Positive Annotations in Untargeted Metabolomics [J].
Lenski, Marie ;
Maallem, Said ;
Zarcone, Gianni ;
Garcon, Guillaume ;
Lo-Guidice, Jean-Marc ;
Antherieu, Sebastien ;
Allorge, Delphine .
METABOLITES, 2023, 13 (02)
[19]   Exergy-based optimisation of a phase change materials integrated hybrid renewable system for active cooling applications using supervised machine learning method [J].
Tang, Liang ;
Zhou, Yuekuan ;
Zheng, Siqian ;
Zhang, Guoqiang .
SOLAR ENERGY, 2020, 195 :514-526
[20]   Prediction of PM2.5 concentrations at the locations of monitoring sites measuring PM10 and NOx, using generalized additive models and machine learning methods: A case study in London [J].
Analitis, Antonis ;
Barratt, Benjamin ;
Green, David ;
Beddows, Andrew ;
Samoli, Evangelia ;
Schwartz, Joel ;
Katsouyanni, Klea .
ATMOSPHERIC ENVIRONMENT, 2020, 240